DOI: 10.55176/2414-1038-2021-3-77-87
Authors & Affiliations
Kolesnik M.Y.1, Aliev T.N.1,2, Likhanskii V.V.1,2
1 Lebedev Physical Institute of the Russian Academy of Science, Moscow, Russia
2 National Research Center “Kurchatov Institute”, Moscow, Russia
Kolesnik M.Y.1 – Leading Researcher, Cand. Sci. (Techn.). Contacts: 53 Leninsky Prospekt, Moscow, 119991 GSP-1. Tel.: +7 (916) 752-27-34; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Aliev T.N.1,2 – Leading Researcher, Cand. Sci. (Techn.).
Likhanskii V.V.1,2– Head of the Department, Dr. Sci. (Phys.-Math.)
Abstract
Computation study of the average zirconium hydride length on the cooling rate was performed using the precipitate nucleation and growth model. The cooling rate was varied in the range equal to six orders between typical values for the spent nuclear fuel dry storage conditions to values typical for laboratory tests modeling the dry storage. The calculations showed that as the cooling rate decreases, the hydrides concentration decreases, and their average length increases linearly on a double logarithmic scale. These dependencies have no limit if hydrides were abscended in the sample before the cooling began. If there were hydrides in the sample before the start of cooling, then they will grow and new hydrides will not nucleate in the limit of low cooling rates. For spent nuclear fuel dry storage, these results mean that if hydrides remain in the fuel claddings at the initial storage period, then hydrides morphology and hydrogen embrittlement at the end of the storage period are similar values gained under laboratory conditions with sufficiently slow cooling. If hydrides in fuel claddings are completely dissolved at the beginning of dry storage, then their length will be significantly greater than in laboratory tests at the end of the storage. Therefore, if the threshold values for the circumferential stresses are exceeded in fuel claddings, the hydrogen embrittlement can be expected to be higher than after faster cooling in typical laboratory studies. In this case, the hydrogen embrittlement assessment should be performed in a conservative approach assuming that radial hydrides have an average length equal to the thickness of the fuel cladding.
Keywords
zirconium hydrides, dry storage, hydrogen embrittlement, zirconium alloys, spent nuclear fuel, phase transitions, nucleation, precipitate growth, hydrogen in metals, fuel claddings, materials modeling
Article Text (PDF, in Russian)
References
- Cox B. Hydrogen uptake during oxidation of zirconium alloys. J. Alloys Compd, 1997, vol. 56, pp. 244–246. doi: 10.1016/S0925-8388(96)02852-6.
- Billone M.C., Burtseva T.A., Einziger R.E. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions. J. Nucl. Mat., 2013, vol. 433, pp. 431–448. doi: 10.1016/j.jnucmat.2012.10.002.
- IAEA-TECDOC-1771. Spent Fuel Performance Final Report of a Coordinated Assessment and Research (SPAR-III) 2009-2014. Vienna, IAEA Publ., 2015.
- Nakatsuka M. Yagnik S. Effect of Hydrides on Mechanical Properties and Failure Morphology of BWR Fuel Cladding at Very High Strain Rate. J. ASTM Int., 2010, vol. 8. doi: 10.1520/JAI102954.
- Fang Q, Daymond M.R., King A Study on the morphology of bulk hydrides by synchrotron X-ray tomography. Mater. Charact., 2017, vol. 134, pp. 362–369. doi: 10.1016/j.matchar.2017.11.013.
- Puls M.P. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components – Hydride Reorientation. Tollered, A.N.T International, 2018. 27 p.
- Min S.J., Kim M.S., Kim K.T. Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings. J. Nucl. Mater, 2013, vol. 441, pp. 306–314. doi: 10.1016/j.jnucmat.2013.06.006.
- Aomi M., Baba T., Miyashita T., Kamimura K., Yasuda T., Shinohara Y., Takeda T. Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage. J. ASTM Int., 2008, vol. 5, pp. 651–673. doi: 10.1520/JAI101262.
- Yamauchi A., Ogata K. A study on macroscopic fuel cladding ductile-to-brittle transition at 300 °C induced by radial hydrides. J. Nucl. Sci. Technol., 2020, vol. 57, pp. 301–311. doi: 10.1080/00223131.2019.1676835.
- Rashid J., Machiels A. Threat of hydride re-orientation to spent fuel integrity during transportation accidents: Myth or reality? Am. Nucl. Soc. Proceedings of the 2007 International LWR Fuel Performance Metting (Top Fuel). San Francisco, USA, 2007, paper 1039, pp. 464–471.
- Kolesnik M., Aliev T., Likhanskii V. Modeling of size, aspect ratio, and orientation of flattened precipitates in the context of Zr-H system under external stress. Comput. Mater. Sci., 2021, vol. 189, p. 110260. doi: 10.1016/j.commatsci.2020.110260.
- Sear R.P. Nucleation: Theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter., 2007, vol. 19, p. 033101. doi: 10.1088/0953-8984/19/3/033101.
- Massih A.R., Jernkvist L.O. Stress orientation of second-phase in alloys: Hydrides in zirconium alloys. Comput. Mater. Sci., 2009, vol. 46, pp. 1091–1097. doi: 10.1016/j.commatsci.2009.05.025.
- Han G.M., Zhao Y.F., Zhu C.B., Lin De-Ye, Zhu X.Y., Zhang J., Hu S.Y., Song H.F. Phase-field modeling of stacking structure formation and transition of δ-hydride precipitates in zirconium. Acta Mater., 2019, vol. 165, pp. 528–546. doi: 10.1016/j.actamat.2018.12.009.
- Bai J.B., Ji N., Gilbon D., Prioul C., Francois D. Hydride Embrittlement in Zircaloy-4 plate: Part II. Interaction between thetensile stress and the hydride morphology. Met. Mater. Trans. A., 1994, vol. 25, issue 6, pp. 1199–1208. doi: 10.1007/BF02652294.
- Hardie D., Shanahan M.W. Stress reorientation of hydrides in Zirconium-2.5% Niobium. J. Nucl. Mat., 1975, vol. 55, issue 1, p. 1–13. doi: 10.1016/0022-3115(75)90132-4.
- Kulakov G.V., Vatulin A.V., Komovalov Yu.V., Kosaurov A.A., Peregud M.M., Korotchenko E.A., Shishin V.Yu., Shel’dyakov A.A. Analysis of the effect of the stress-strain state of irradiated zirconium-alloy fuel-element cladding on hydride orientation. Atomic Energy, vol. 122, issue 2, pp. 87–92. doi: 10.1007/s10512-017-0240-1.
- Pan Z.L., Puls M.P. Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles. J. Alloys Compd., 2000, vol. 310, pp. 214–218. doi: 10.1016/S0925-8388(00)01028-8.
- Puls M.P. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. London, Springer-Verlag Publ., 2012. 452 p.
- Huang G.Y., Wirth B.D. First-principles study of interfacial energy between alpha-zirconium and zirconium hydride. J. Appl. Phys., 2019, vol. 126. doi: 10.1063/1.5102176.
- Kim J.S, Kim T.H., Kim K., Kim Y.S. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions. Nucl. Eng. Technol., 2020. doi: 10.1016/j.net.2020.01.022.
- Lee H., Kim K., Kim J.S., Kim Y.S. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition. Nucl. Eng. Technol., 2020, vol. 52, no. 2, pp. 352–359. doi: 10.1016/j.net.2019.07.032.
- Zanellato O., Preuss M., Buffiere J.-Y., Ribeiro F., Steuwer A., Desquines J., Andrieux J., Krebs B. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. J. Nucl. Mat., 2012, vol. 420, no. 1–3, pp. 537–547. doi: 10.1016/j.jnucmat.2011.11.009.
UDC 544.344.015.2
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 3, 3:6