DOI: 10.55176/2414-1038-2021-3-123-135
Authors & Affiliations
Alchagirov B.B., Khibiev A.Kh.
Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
Alchagirov B.B. – Professor, Dr. Sci. (Phys. and Math.). Contacts: 173 Chernyshevsky st., Nalchik, Kabardino-Balkarian Republic, Russia, 360004. Tel.: +7 (928) 723-25-56; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it..
Khibiev A.Kh. – Postgraduate Student.
Abstract
In the 1950s liquid lead and the lead-bismuth eutectic alloy (Pb45Bi55) were considered candidates for their use as coolants for nuclear power systems in the USSR and the USA. At the same time, the alloy (Pb45Bi55), first proposed by A.I. Leypunsky, was chosen as a coolant for the nuclear submarine
“Alpha”, which was ahead of its time in terms of its tactical and technical data. However, in 1968, one of them suffered a severe radiation accident caused by the melting of fuel elements in the core of an onboard nuclear reactor due to the precipitation of oxides from the coolant and their accumulation, which blocked the pipeline cross-section and sharply worsened the cooling of the reactor, which led to its failure. In fact, the primary cause of the accident was a lack of knowledge about the physicochemical and technological properties of the lead-bismuth coolant. Thus, the main disadvantage of the Pb45Bi55 coolant is its corrosiveness to structural materials used in the nuclear power plant. But it has been found that corrosion by liquid lead alloys can be reduced by adjusting the oxygen level in the coolant. For example, the corrosion rate of martensitic steel at 770 K in a Pb45Bi55 flowing coolant without oxygen is about 1 mm per year, but it can be reduced to 0.01 mm per year, i.e. 100 times, if oxygen is dissolved in Pb45Bi55 coolant and its mass concentration is maintained at the level of 0.01 ppm. The observed effect is explained by the protection provided by the oxide layer formed on the steel surface of the pipeline. Thus, for a deeper understanding of the phenomena occurring at the boundaries of the liquid metal “coolants – gases” section, it remains relevant to study the processes of formation and destruction of the protective oxide layer and its behavior in coolant fluids, especially from the point of view of long-term operation of nuclear power plants. In this regard, data on the surface tension of the “coolant – gas” interphase boundaries are of great scientific and practical importance. In this connection, the present work sets the task of experimentally studying the influence of atmospheric air on the surface tension of Pb45Bi55 eutectic melt. Measurements of the surface tension of the eutectic melt Pb44,6Bi55,4 prepared by the authors were carried out in a non-stop mode sequentially, under static vacuum and atmospheric air, on the same surface. About three hundred experimental points obtained in this work made it possible to describe the dynamics of the surface tension changing process depending on the time of exposure of the coolant surface in vacuum and atmospheric air.
It is shown that in comparison with the results obtained by the authors by the large lying drop method in a static vacuum, in the first 10 minutes from the beginning of the exposure of the eutectic melt in atmospheric air at a pressure of about 300 mmHg), the surface tension of the eutectic Pb44.6Bi55.4 decreases by 55 mN/m and more, which is an order of magnitude higher than the total error (2 %) of our measurements.
Keywords
liquid-gas interface, lead, bismuth, eutectic alloy, heat carrier, surface tension, vacuum, atmospheric air, oxygen, solubility, concentration, interphase boundaries, adsorption, diffusion, oxidation, oxide films
Article Text (PDF, in Russian)
References
- Heavy Liquid-Metal Coolants in Nuclear Technologies (HLMC-2018): Book of Abstracts of the Fifth Conference. Obninsk, IPPE Publ., 2018. 155 p. Available at: https://www.ippe.ru/images/publications/thesis/liquid-metal-coolant-2018abstracts.pdf (accessed 23.08.2021).
- Tyazhelyye zhidkometallicheskiye teplonositeli v yadernykh tekhnologiyakh: materialy konferentsii (TZHMT-2018) [Proc. of the Conf. "Heavy Liquid-Metal Coolants in Nuclear Technologies (HLMC-2018)"]. Obninsk, IPPE Publ., 2019. 581 p. Available at: https://www.ippe.ru/images/publications/thesis/HLMC-2018.pdf (accessed 23.08.2021).
- Zhukov A.V., Kuzina Yu.A., Belozerov V.I. Reaktory s tyazhelym teplonositelem i nekotoryye teplogidravlicheskiye dannyye dlya nikh [Reactors with heavy coolant and some thermohydraulic data for them]. Izvestiya vuzov. Yadernaya energetika, 2011, no. 3, pp. 100–136.
- Martynov P.N., Rachkov V.I., Askhadullin R.SH., Storozhenko A.N., Ul'yanov V.V. Analiz sovremennogo sostoyaniya tekhnologii svintsovogo i svintsovo-vismutovogo teplonositeley [Analysis of the Present Status of Lead and Lead-Bismuth Coolant Technology]. Atomnaya energiya – Atomic Energy, 2014, vol. 116, no. 4, pp. 285–292. Available at: https://link.springer.com/article/10.1007/s10512-014-9855-7 (accessed 23.08.2021).
- Jinsuo Zhang. Lead–Bismuth Eutectic (LBE): A Coolant Candidate for Gen. IV Advanced Nuclear Reactor Concepts. Advanced Engineering Materials, 2014, no. 4, pp. 349–356.
- Giorgio Locatelli, Mauro Mancini, Nicola Todeschini. Generation IV nuclear reactors: Current status and future prospects. Energy Policy Elsevier, 2013, vol. 61(C), pp. 1503–1520.
- Sobolev V. Database of thermophysical properties of liquid metal coolants for GEN-IV Sodium, lead, lead-bismuth eutectic (and bismuth). Scientific Report of the Belgian Nuclear Research Centre, 2011, p. 175.
- Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. OECD/NEA Nuclear Science Committee, 2007, 693 p.
- Gromov B.F., Shmatko B.A. Fiziko-khimicheskiye svoystva rasplavov svinets-vismut [Physicochemical properties of lead-bismuth melts]. Izvestiya vuzov. Yadernaya energetika, 1996, no. 4, pp. 35–41.
- Orlov V.V. Evolution of the Technical Concept of Fast Reactors. The Concept of BREST. Proc. Int. Seminar “Cost Competitive, Proliferation Resistant, Inherently and Ecologically Safe Fast Reactor and Fuel Cycle for Large Scale Power”. Ðœoscow, 2000, pp. 25–31.
- Slesarev I.S., Adamov E.O., Leonov V.N., Lopatkin A.V., Rachkov V.I., Khomyakov Yu.S. K voprosu o dostizhimosti yestestvennoy bezopasnosti YAEU pyatogo pokoleniya [To the question about the attainability of the natural safety of the fifth generation nuclear power plant]. Izvestiya Rossiyskoy akademii nauk. Energetika – News of the Russian Academy of Sciences. Energy, 2020, no. 3, pp. 15–32.
- P. Loewen Eric, Akira Thomas Tokuhiro. Status of Research and Development of the Lead-Alloy-Cooled Fast Reactor. Journal of Nuclear Science and Technology, 2003, vol. 40:8, pp. 614–627.
- Legkikh A.Yu., Askhadullin R.Sh., Sadovnichiy R.P. Obespecheniye korrozionnoy stoykosti staley v tyazhelykh kometallicheskikh teplonositelyakh [Ensuring corrosion resistance of steels in heavy liquid metal coolants]. Izvestiya vuzov. Yadernaya energetika, 2016, no. 1, pp. 138–148.
- Shelemet'yev V.M., Martynov P.N., Storozhenko A.N., Chernov M.E., Ul'yanov V.V. Kontrol' primesey kisloroda i vodoroda v zashchitnom gaze ustanovok s TZHMT [Control of oxygen and hydrogen impurities in the protective gas of HLMC plants]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2015, no. 3, pp. 142–162.
- Askhadullin R.Sh., Martynov P.N., Rachkov V.I., Legkikh A.Yu., Storozhenko A.N., Ul'yanov V.V., Gulevskiy V.A. Kontrol' i regulirovaniye kisloroda v tyazhelykh zhidkometallicheskikh teplonositelyakh dlya protivokorrozionnoy staley [Control and regulation of oxygen in heavy liquid metal heat transfer fluids for corrosion protection of steels.]. Teplofizika vysokikh temperature –High Temperature, 2016, vol. 54, no. 4, pp. 595–604.
- Iredale T. Adsorption from the gas phase at a liquid-gas interface. LXV. Part I. Phil. Mag., 1923, vol. 45, ser. 6, no. 269, pp. 1088–1100; LXV. Part II. Phil. Mag., 1924, vol. 48, ser. 6, no. 283, pp. 177–193; LXV. Part III. Phil. Mag., 1925, vol. 49, ser. 6, no. 291, pp. 603–627.
- Unezhev B.Kh., Zadumkin S.N., Karashayev A.A. Vliyaniye gazovoy sredy na poverkhnostnoye natyazheniye zhidkikh metallov. Elektrokhimiya i rasplavy [Influence of the gas environment on the surface tension of liquid metals. Electrochemistry and melts]. Moscow, Nauka Publ., 1974. Pp. 111–118.
- Ricci E., Novacovich R., Ratto M., Arato E. Surface properties of molten metal – oxygen systems: theoretical tools. Transactions of JWRI (Joining and Welding Research Institute), 2001, vol. 30, Special Issue, pp. 179–188.
- Arato E., Bernardib M., Giurannoc D., Ricci E. Surface oxidability of pure liquid metals and alloys. Applied Surface Science, 2012, vol. 258, pp. 2686–2690.
- Lepinskikh B.M., Kiselev V.I. Ob okislenii metallov i splavov kislorodom iz gazovoy fazy [On oxidation of metals and alloys by oxygen from the gas phase. Metals]. Metally – Russian Metallurgy, 1974, no. 5, pp. 51–54.
- Belousov A.A., Pastukhov E.A., Aleshina S.N. Kinetika okisleniya zhidkikh olovyannykh bronz kislorodom vozdukha [Kinetics of oxidation of liquid tin bronzes by atmospheric oxygen]. Rasplavy – Melts, 2000, no. 4, pp. 25–26.
- Sozayev V.A., Sergeyev I.N., Kumykov V.K., Manukyants A.R. Vliyaniye malykh primesey kisloroda v inertnom gaze i yego davleniya na poverkhnostnoye natyazheniye zhidkogo indiya [Influence of small oxygen impurities in an inert gas and its pressure on the surface tension of liquid indium]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya– Bulletin of the Russian Academy of Sciences: Physics, 2012, vol. 76, no. 7, pp. 891–894.
- Rusanov A.I. Lektsii po termodinamike poverkhnostey: uchebnoye posobiye [Lectures on thermodynamics of surfaces: textbook]. S.-Peterburg, “Lan'” Publ., 2013. 240 p.
- Zadumkin S.N., Khokonov KH.B., Karamurzov B.S., Alchagirov B.B., Taova T.M. Fizika mezhfaznykh yavleniy v kondensirovannykh sredakh [Physics of interphase phenomena in condensed media.]. Nal'chik, Kabardino-Balkarskiy gosuniversitet im. Kh.M. Berbekova Publ., 2014. 246 p.
- Summ B.D., Goryunov Yu.V. Fiziko-khimicheskiye osnovy smachivaniya i rastekaniya [Physicochemical bases of wetting and spreading]. Moscow, Khimiya Publ., 1976. 302 p.
- Emel'yanenko A.M., Boynovich L.B. Analiz smachivaniya kak effektivnyy metod izucheniya pokrytiy, poverkhnostey i proiskhodyashchikh na nikh protsessov. Obzor [Analysis of wetting as an effective method for studying the characteristics of coatings, surfaces and processes occurring on them. Review]. Zavodskaya laboratoriya. Diagnostika materialov – Industrial laboratory. Diagnostics of materials, 2010, vol. 76, no. 9, pp. 27–36.
- Alchagirov B.B., Dyshekova F.F., Karamurzov B.S., Taova T.M., Khokonov Kh.B. Smachivayemost' reaktornykh staley 12X18N10T i EK-173 evtekticheskim rasplavom RbVi i yego splavami s litiyem [Wettability of reactor steels 12Kh18N10T and EK-173 by eutectic melt PbBi and its alloys with lithium]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya– Bulletin of the Russian Academy of Sciences: Physics, 2016, vol. 80, no. 11, pp. 1570–1575.
- Alchagirov B.B., Mozgovoy A.G., Kurshev O.A. Poverkhnostnoye natyazheniye zhidkoy svinets-vismutovoy evtektiki pri tekhnicheski vazhnykh temperaturakh [Surface tension of liquid lead-bismuth eutectic at technically important temperatures]. Perspektivnyye materialy, 2003, no. 6, pp. 50–54.
- Alchagirov B.B., Chochayeva A.M., Mozgovoy A.G., Arnol'dov M.N., Khokonov Kh.B. Poverkhnostnoye natyazheniye zhidkikh okoloevtekticheskikh splavov sistemy svinets-vismut [Surface tension of liquid near-eutectic alloys of the lead-bismuth system]. Teplofizika Vysokikh Temperatur – High Temperature, 2003, vol. 41, no. 6, pp. 852–859.
- Novacovic R., Ricci E., Gnecco F., Giuranno D. Surface Properties of Bi-Pb Liquid Alloys. Surface of Science, 2002, vol. 515, pp. 377–389.
- Kirillov P.L., Deniskina N.B. Teplofizicheskiye zhidkometallicheskikh teplonositeley (spravochnyye tablitsy i sootnosheniya). Obzor FEI–0291 [Thermophysical properties of liquid metal heat carriers (reference tables and ratios). Overview IPPE–0291]. Moscow, TSNII Atominform Publ., 2000. 42 p.
- Alchagirov B.B., Kyasova O.Kh., Kokov Z.A. Eksperimental'naya ustanovka dlya opredeleniya bystrykh izmeneniy poverkhnostnogo natyazheniya zhidkikhkometalli teplonositeley v usloviyakh adsorbtsii iz gazovoy sredy [An experimental setup for determining rapid changes in the surface tension of liquid metal coolants under conditions of adsorption from a gaseous medium.]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2018, no. 5, pp. 25–34.
- Kokov Z.A., Dyshekova F.F., Kokov A.A., Alchagirov B.B., Arkhestov R.Kh., Kegaduyeva Z.A. Programma avtomatizirovannogo eksperimenta po izmereniyu poverkhnostnogo natyazheniya zhidkostey metodom lezhashchey kapli [A program for automating a physical experiment to measure the surface tension of liquids by the lying drop method]. Certificate of state registration of a computer program, no. 2015614191, 2015.
- Alchagirov B.B., Al'berdiyeva D.Kh., Dadashev R.Kh., Khibiyev A.Kh., Elimkhanov D.Z. Pribor dlya izucheniya vliyaniya gazovoy atmosfery na poverkhnostnoye natyazheniye metallov i splavov [A device for studying the effect of a gas atmosphere on the surface tension of metals and alloys]. Vestnik Akademii nauk Chechenskoy Respubliki – Bulletin of the Academy of Sciences of the Chechen Republic, 2016, no. 4(33), pp. 5–13.
- Chusov I.A., Pronyayev V.G., Novikov G.E., Obysov N.A. Sootnosheniya dlya rascheta transportnykh i termodinamicheskikh svoystv evtektiki svinets-vismut [Relationships for calculating the transport and thermodynamic properties of the lead-bismuth eutectic]. Izvestiya vuzov. Yadernaya energetika, 2020, no. 1, pp. 107–120.
- Plevachuk Yu., Sklarchuk V., Eckert S., Gerbeth G. Some physical data of the near eutectic liquid lead-bismuth. Journal of Nuclear Materials, 2008, vol. 373, issue 1, pp. 335–342.
- Kirillov P.L., Terent'yeva M.I., Deniskina N.B. Teplofizicheskiye materialy yadernoy tekhniki: uchebnoye spravochnoye posobiye [Thermophysical properties of materials in nuclear technology: a tutorial]. Moscow, IzdAt Publ., 2008. 200 p.
- Miller R.R. Physical Properties of Liquid Metals/Liquid Metals Handbook, Report NAVEXOS, R.N. Lyon (ed.), US Gov. Pt. Office, Washington DC, 2nd edition (rev.), ORNL, Tennessee, 1951.
- Semenchenko V.K. Surface phenomena in metals and alloys. London, Pergamon Press, 1961.
- Kazakova N.V., Lyamkin S.A., Lepinskikh B.M. Density and surface tension of Pb-Bi system melts. Zhurnal Fizicheskoy Khimii, 1984, vol. 58, iss. 6, pp. 1534–1538.
- Pastor Torres F.C. Surface tension measurement of heavy liquid metals related to accelerator driven systems (ADS). Diploma Thesis, FZK (IKET), KALLA, 2003.
- Miller R.R. Physical Properties of Liquid Metals. Liquid Metals Handbook, R.N. Lyon (ed.), 2nd edition, Report NAVEXOS P-733. Atomic Energy Commission and Dept. of the Navy, Washington, USA, 1954, June 1952 (rev. 1954).
- Pokrovsky N.L., Pugachevich P.P., Golubev P.A. Study of the surface tension of lead-bismuth solutions. Zhurnal Fizicheskoy Khimii, 1969, vol. 43, iss. 8, pp. 2158–2159.
- Risold D., Hallstedt B., Gaukler L.J., Lukas H.L., Fries S. The bismuth-oxygen system. Journal of Phase Equilibria, 1995, vol. 16, p. 223.
- Risold D., Nagata J.I., Suzuki R.O. Thermodynamic description of the Pb-O system. Journal of Phase Equilibria, 1998, vol. 19, no. 3, pp. 213–233.
- Gromov B.F., Orlov Yu.I., Martynov P.N., Gulevskiy V.A. Problemy tyazhelykh zhidkometallicheskikh teplonositeley (svinets-vismut, svinets) [Heavy liquid metal coolants (lead-bismuth, lead) technologies problems]. Trudy konferentsii “Tyazhelyye zhidkometallicheskiye teplonositeli v yadernykh tekhnologiyakh” [Proc. Conf. “Heavy Liquid-Mmetal Coolants in Nuclear Technologies”]. Obninsk, 1999, vol. 1, pp. 92–106.
- Askhadullin R.Sh. Sorbtsionnaya ochistka zhidkometallicheskikh teplonositeley yadernykh energeticheskikh ustanovok (galliy, svinets-vismut, svinets). Diss. kand. tekhn. nauk [Sorption purification of liquid metal coolants of nuclear power plants (gallium, lead-bismuth, lead). Cand. tech. sci. diss.]. Obninsk, IPPE, 1997. 29 p.
- Wriedt H.A. The O−Pb (Oxygen-Lead) system. JPE, 1988, 9, no. 2, pp. 106–127.
- Ganesan Rajesh, Gnanasekaran T., S. Srinivasa Raman. Standard molar Gibbs energy of formation of Pb5Bi8O17 and PbBi12O19 and phase diagram of the Pb–Bi–O system. Journal of Nuclear Materials, 2008, vol. 375, no. 2, pp. 229–242.
- Gladinez K., Rosseel K., Lim J., Marino A., Heynderickx G., Aerts A. Formation and transport of lead oxide in a non-isothermal lead-bismuth eutectic loop. Nuclear Engineering and Design, 2019, vol. 349, pp. 78–85.
- Dongdong Li, Chi Song, He H.Y., Liu C.S., Pan B.C., Wu Y.C. The behavior of oxygen in liquid lead–bismuth eutectic. Journal of Nuclear Materials, 2013, vol. 437, issues 1–3, pp. 62–65.
- Rusanov A.I., Prokhorov V.A. Mezhfaznaya tenziometriya [Interfacial tensiometry]. S.-Petersburg, Khimiya Publ., 1994. 400 p.
- Alchagirov B.B., Dadashev R.Kh. Metod bol'shoy kapli dlya opredeleniya plotnosti i poverkhnostnogo natyazheniya metallov i splavov [Large drop method for determining the density and surface tension of metals and alloys]. Nal'chik, Kabardino-Balkarian State University named after H.M. Berbekov Publ., 2000. 94 p.
- Alchagirov B.B., Khibiyev A.Kh., Kanametova O.Kh., Latipov A.L., Lesev V.N., Kokov Z.A., Dyshekova F.F. Ustroystvo dlya opredeleniya vliyaniya mekhanicheskikh kolebaniy lezhashchey kapli na rezul'taty izmereniy poverkhnostnogo natyazheniya [A device for determining the influence of mechanical vibrations of a lying drop on the results of measurements of surface tension]. Pribory– Devices, 2021, no. 3, pp. 213–233.
- Alchagirov B.B., Taova T.M., Afaunova L.Kh., Dyshekova F.F. K voprosu o dostovernosti eksperimental'nykh dannykh po poverkhnostnomu natyazheniyu zhidkikh metallov [On the question of the reliability of experimental data on the surface tension of liquid metals]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya– Bulletin of the Russian Academy of Sciences: Physics, 2012, vol. 76, no. 13, pp. 26–29.
UDC 621.039; 532.61; 541.18; 66.071.7; 669.094.3
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 3, 3:9