DOI: 10.55176/2414-1038-2021-3-143-157
Authors & Affiliations
Avdeenkov А.V., Achakovskiy O.I.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Avdeenkov А.V. – Lead Researcher, Cand. Sci. (Phys.-Math.).
Achakovskiy O.I. – Researcher, Cand. Sci. (Phys.-Math.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-54-72; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
An engineering model has been analyzed for a self-consistent calculation of the growth of an oxide film in circulation circuits with a heavy liquid metal coolant and concentrations of impurities (oxygen, iron, and magnetite) from the point of view of a possible uncertainty in determining the oxygen activity. The modeling of thermohydraulic and physicochemical processes is based on solving the associated three-dimensional equations of hydrodynamics, heat transfer, convective-diffusive transport, and the formation of chemically interacting impurity components in the coolant volume and on the surface of steels. The yield of iron and the formation of magnetite are due precisely to the specifics of self-consistent physicochemical processes in the oxide film and at the interface.
There have been conducted model calculations of the influence of the uncertainty of oxygen activity on the speed and the integral yield of iron, which under the given conditions of the oxygen regime after an interaction with oxygen causes the appearance of magnetite.
It has been numerically demonstrated that in the saturation mode there is a model-independent characteristic, which is determined by the parabolic constant and thickness of the oxide film characteristic of steel.
Keywords
mass transfer, impurities, oxide film, fast reactor, lead coolant, MASKA-LM code, iron yield, oxygen regime, saturation
Article Text (PDF, in Russian)
References
- Avdeenkov A.V., Achakovsky O.I., Ketlerov V.V., Kumaev V.Ya., Orlov A.I. Basic models and approximation for the engineering description of the kinetics of the oxide layer of steel in a flow of heavy liquid metal coolant under various oxygen conditions. Nuclear Energy and Technology, 2020, vol. 6(3), pp. 215–234. DOI: https://doi.org/10.3897/nucet.6.59068.
Alekseev V.V., Kozlov F.A., Kumaev V.Ya. et al. Modelirovanie protsessov massoperenosa i korrozii staley v yadernykh energeticheskikh ustanovkakh so svintsovym teplonositelem [Modeling the processes of mass transfer and corrosion of steels in nuclear power plants with lead coolant]. Preprint FEI-3179 – Preprint IPPE-3179. Obninsk, 2010. 22 p.
Alekseev V.V., Orlova E.A., Kozlov F.A. et al. Modelirovanie protsessov massoperenosa i korrozii staley v yadernykh energeticheskikh ustanovkakh so svintsovym teplonositelem [Modeling the processes of mass transfer and corrosion of steels in nuclear power plants with lead coolant]. Preprint FEI-3128 – Preprint IPPE-3128. Obninsk, 2008. 23 p.
Alekseev V.V., Orlova E.A., Kozlov F.A., Torbenkova I.Ju., Kondratev A.S. Raschetno-teoreticheskiy analiz protsessa oksidirovaniya stali v svintsovom teplonositele [Computational and theoretical analysis of the steel oxidation process in a lead coolant]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yadernye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 2010, no. 1–2, pp. 56–66.
- Martinelli L., Balbaud-Célérier F., Terlain A., Bosonnet S., Picard G., Santarini G. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470 °C (Part II). Corrosion Science, 2008, vol. 50, issue 9, pp. 2537–2548.
- Hwang I.S., Lim J. Structural Developments for Lead-Bismuth Cooled Fast Reactors, PEACER and PASCAR. Proc. of the 25th KAIF/KNS Annual Conference. Seoul, Korea, 2010. Available at: https://www.researchgate.net/publication/319037869_Structural_Developments_for_Lead-Bismuth_Cooled_Fast_Reactors_PEACER_and_PASCAR (accessed 25.08.2021).
- Fazio C., Benamati G., Martini C., Palombarini G. Compatibility tests on steels in molten lead and lead–bismuth. Journal of Nuclear Materials, 2001, vol. 296, issue 1–3, pp. 243–248.
- Aiello A., Azzati M., Benamati G., Gessi A., Long B., Scaddozzo G. Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration. Journal of Nuclear Materials, 2004, vol. 335, issue 2, pp. 169–173.
- Zhang Jinsuo, Li Ning, Chen Yitung, Rusanov A.E. Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE). Journal of Nuclear Materials, 2005, vol. 336, issue 1, pp. 1–10.
- Barbier F., Rusanov A. Corrosion behavior of steels in flowing lead-bismuth. Journal of Nuclear Materials, 2001, vol. 296, issue 1–3, pp. 231–236.
- Balboad-Celerier. F, Martinelli L., Terlain A., Ngomsik A., Sanchez S. Picard G. High-Temperature Corrosion of Steels in Liquid Pb-Be alloy. Proc of the Materials Science Forum, 2004, vol. 461–464, pp. 1091–1098.
- Niyazov S.-A.S., Ivanov K.D., Lavrova O.V. Rezul'taty chislennykh otsenok poter' komponentov staley v tyazhelye teplonositeli [Results of Numerical Estimates of the Loss of Steel Components to Heavy Coolants]. Trudy mezhdunarodnoy konferentsii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh (TZhMT-2013)” [Proc. Int. Conf. “Heavy Liquid Metal Coolants in Nuclear Technologies (HLMC-2013)”]. Obninsk, 2013, pp. 599–603;
Zabud'ko A.N., Bugreev M.I., Ivanov K.D., Nikolaev S.A., Chernov V.A., Nikolaev A.N., Masterov A.V. O vozmozhnosti issledovaniy otrabotavshikh kasset i tvelov reaktorov APL s TZhMT proektov 705 i 705K dlya obosnovaniya tekhnologiy perspektivnykh YaEU. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika reaktorov novogo pokoleniya (Teplofizika – 2018)” [Proc. Sci. and Techn. Conf. “Thermophysics of New Generation Reactors (Thermophysics – 2018)”]. Obninsk, 2018, pp. 138–143.
- Töpfer J., Aggarwal S., Dieckmann R. Point defects and cation tracer diffusion in (CrxFe1 − x)3 − δO4 spinels. Solid State Ionics, 1995, vol. 81, pp. 251–266.
Backhaus-Ricoult M., Dieckmann R. Defects and Cation Diffusion in Magnetite (VII): Diffusion Controlled Formation of Magnetite During Reactions in the Iron-Oxygen System. Berichte der Bunsengesellschaft für physikalische Chemie, 1986, vol. 90, issue 8, pp. 690–698. DOI: https://doi.org/10.1002/bbpc.19860900814.
- Berger F.P., Hau K.F.-F.L. Mass transfer in turbulent pipe flow measured by electrochemical method. International Journal of Heat and Mass Transfer, 1977, vol. 20, pp. 1185–1194.
Silverman D.C. Rotating cylinder electrode for velocity sensitivity testing. Corrosion, 1984. vol. 40, p. 220.
Harriott P., Hamilton R.M. Solid Liquid Mass Transfer in Turbulent Pipe Flow. Chemical Engineering Science, 1965, vol. 20, p. 1073.
- Askhadullin R.Sh., Storozhenko A.N., Melnikov V.P., Legkikh A.Yu., Ulyanov V.V. Obespechenie tekhnologii tyazhelogo zhidkometallicheskogo teplonositelya v reaktornykh ustanovkakh novogo pokoleniya [Ensuring of the Heavy Liquid Metal Coolant Technology in Reactors of New Generation]. Voprosy Atomnoy Nauki i Tekhniki, Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2018, no. 4, pp. 89–103.
UDC 621.039.534
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 3, 3:11