DOI: 10.55176/2414-1038-2021-4-18-27
Authors & Affiliations
Belonogov M.N., Volkov I.A., Modestov D.G., Simonenko V.A., Khmelnitsky D.V.
Zababakhin All-Russia Research Institute of Technical Physics, Snezhinsk, Russia
 
 
 Belonogov M.N. – Researcher. Contacts: p.b. 245, 13, Vasilyev st., Snezhinsk, Chelyabinsk region,  Russia, 456770. Tel.: +7 (35146) 5-46-39; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. 
Volkov I.A. – Researcher. 
Modestov D. G. – Senior Researcher.
Simonenko  V.A. – Deputy Scientific Adviser, Dr. Sci.  (Phys.-Math.), Professor. 
Khmelnitsky D.V. – Deputy Head of  Department, Cand. Sci. (Phys.-Math.), Associate Professor.
Abstract
Reduction in  the amount of accumulated minor actinides (Np, Am, and Cm isotopes), as well  as, the long-lived fission products, to the extent possible, is a top-priority  task for the nuclear power engineering. Transmutation of this waste in a  special-purpose molten-salt burner reactor has been currently proposed as a  possible solution for this problem. 
The objective of the present paper is to investigate basic regularities  of Np, Am, and Cm transmutation in the molten salt burner reactor and to  determine optimal operational conditions of the reactor. In the optimal  equilibrium mode just fluorides of these elements are added into the fuel  composition but the fission products are extracted from it. This mode are  reached by maintaining a specified actinide concentration. 
In order to provide the reactor criticality with a lower than optimum  actinide concentration, it is required to add plutonium in the feed fuel  instead of a certain amount of minor actinides, thus impairing the  transmutation efficiency. To keep the critical state in the equilibrium mode,  in situations where the actinide concentration is higher than the optimum one,  it is essential to extract a portion of fuel with high content of 238Pu.  It has been shown that the reactor configuration is the primary factor  responsible for optimum actinide concentration value and that this value varies  little with the feed fuel composition, the type of salt dissolving agent, and  the fuel reprocessing mode. Optimal concentration for the molten-salt burner  reactor with the core volume ranging from 2 to 30 m3 is within 17…10  mole %.
Keywords
 molten salt  reactor, transmutation of minor actinides, equilibrium mode, evolution of  nuclide composition, neutron-physical calculation
Article Text (PDF, in Russian)
References
  - Status and Trends in Spent Fuel and  Radioactive Waste Management. IAEA Nuclear Energy Series No. NW-T-1.14. Vienna, IAEA. 2018. 74  p. 
- Degtyarev A.M.,  Kolyaskin O.E., Myasnikov A.A., Ponomarev L.I., Karmanov F.I., Seregin M.B.,  Sidorkin S.F. Molten-salt subcritical transplutonium actinide  incinerator. Atomic Energy, 2013, vol.  114, issue 4, pp. 225–232.
- Ignatiev  V., Feynberg O. Progress in Development of Li, Be, Na/F Molten Salt Actinide  Recycler and Transmuter Concept. Proc. of  the International Congress on Advanced in Nuclear Power Plants. Nice,  France, 2007, paper 7548. 
- Ignatiev  V., Feynberg O., Gnidoi I., et al. Molten salt actinide recycler and transforming  system without and with Th-U support: Fuel cycle flexibility and key material  properties. Ann. Nucl. Energy, 2014,  vol. 64, pp. 408–420. 
- Zatsepin O.V., Kandiev Ya.Z.,  Kashaeva E.A., Malyshkin G.N., Modestov D.G. Raschety metodom Monte-Karlo po programme  PRIZMA neytronno-fizicheskikh kharakteristik aktivnoy zony VVER-1000. [Calculation for the WWER-1000 Core by the Monte Carlo Method Implemented  in the PRIZMA Code]. Voprosy atomnoy nauki i tekhniki.  Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science  and Technology. Series: Physics of Nuclear Reactors, 2011,  no. 4, pp. 64–73. 
- Modestov D.G. Programma resheniya zadach yadernoy  kinetiki RISK-2014 [The RISK-2014 Code to Solve Nuclear Kinetics Problems]. Preprint RFYATS-VNIITF – Preprint RFNC-VNIITF, no.  243. Snezhinsk, 2014. 
- Trkov  A., Herman M., Browm D.A. ENDF-6 Formats  Manual. Report BNL-90365-2009 Rev.2, 2012. 378 p. Available at:  http://mcnp.lanl.gov/pdf-files/bnl-90635-2009v2.pdf (accessed 07.10.2021). 
- Ponomarev  L.I., Belonogov M.N., Volkov I.A., Simonenko V.A., Sheremet’eva U.F. LiF–NaF–KF  Eutectic Based Fast Molten-Salt Reactor as Np, Am, Cm Transmuter. Atomic Energy,  2019, vol. 126, issue 3, pp. 139–149. 
- Ignatiev  V.V., Feynberg O.S., Zagnitko A.V., Merzlyakov A.V., Surenkov A.I., Panov A.V.,  Subbotin V.G., Afonichkin V.K., Khokhlov V.A., Kormilitsyn M.V.  Molten-salt reactors: new possibilities, problems and solutions. Atomic Energy,  2012, vol. 112, issue 3, pp. 157–165. 
- Ponomarev  L.I., Seregin M.B., Parshin A.P., Mel’nikov S.A., Mikhalichenko A.A., Zagorets L.P.,  Manuilov R.N., Rzheutskii A.A. Fuel Salt for the Molten-Salt Reactor. Atomic  Energy, 2013, vol. 115, issue 1, pp. 5–10. 
- Lizin  A.A., Tomilin S.V., Gnevashov O.E., Gazizov R.K., Osipenko A.G., Kormilitsyn M.V.,  Baranov A.A., Zaharova L.V., Naumov V.S., Ponomarev L.I. PuF3,  AmF3, CeF3, and NdF3 Solubility in LiF–NaF–KF Melt. Atomic Energy, 2013, vol. 115, no. 1, pp. 11–17. 
- Ignatiev V., Surenkov A., Gnidoi I.et al., Compatibility of Selected  Ni-Based Alloys in Molten Li, Na, BE/F Salts with PuF3 and Tellurium  Additions. Nuclear Technology, 2008, vol. 164, pp. 130–142.
- Petrov E.R., Bibichev B.A., Domkin V.D.,  Kozharin V.V., Kurenkov N.V., Mukhin V.S., Panteleev Yu.A. Determination  of the radionuclide composition and burn-up of high-burn-up WWER-1000 fuel by  destructive methods. Radiochemistry,  2012, vol. 54, no. 4, pp. 379–382.
- Belonogov M.N., Volkov I.A.,  Modestov D.G., Rykovanov G.N., Simonenko V.A., Khmelnitsky D.V. On an Optimal  Minor-Actinide Transmutation Regime in a Molten-Salt Reactor. Atomic Energy, 2020, vol. 128, issue 3, pp. 143–150.
- Petrov E.R., Bibichev B.A., Domkin V.D.,  Kozharin V.V., Kurenkov N.V., Mukhin V.S., Panteleev Yu.A. Results of  measuring the content of actinide, neodymium, and cesium isotopes and the  burn-up in a sample of high-burn-up WWER-1000 fuel by destructive methods. Radiochemistry, 2013, vol. 55, no. 5, pp. 517–520. 
- Pyatyy natsional'nyy doklad Rossiyskoy Federatsii o vypolnenii  obyazatel'stv, vytekayushchikh iz Ob"yedinennoy konventsii o bezopasnosti obrashcheniya  s otrabotavshim toplivom i o bezopasnosti obrashcheniya s radioaktivnymi  otkhodami [The fifth national report of the Russian Federation on the  implementation of the obligations arising out of the Joint Convention on the  safety of spent fuel management and on the safety of radioactive waste  management]. Moscow, 2017. 161 p. Available at: https://www.gosnadzor.ru/activity/international/national%20reports/Russian_Federation_rus.pdf (accessed 04.10.2021).
 
UDC 621.039.522
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 4, 4:2