DOI: 10.55176/2414-1038-2021-4-98-105
Authors & Affiliations
Levchenko V.A., Kascheev M.V., Dorokhovich S.L., Zaytsev A.A.
Limited Liability Company “Simulation Systems Ltd.”, Obninsk, Russia
Levchenko V.A. – Director, Cand. Sci. (Techn.).
Kascheev M.V. – Leading Researcher, Dr. Sci. (Techn.), Associate Professor. Contacts: 133, Lenin avenue, Obninsk, Kaluga region, Russia, 249035. Tel.: +7 (484) 396-03-61; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Dorokhovich S.L. – Chief Engineer, Cand. Sci. (Techn.), Associate Professor.
Zaytsev A.A. – Head of the Laboratory, Cand. Sci. (Techn.).
Abstract
The heat conduction equation for an annular fin with an arbitrary profile in the presence of energy release in the fin is obtained in the article. The resulting equation differs from the approximate equation given in the literature by the presence of energy release and a more accurate determination of the length of the arc element. As boundary conditions, the temperature of the base of the fin is set, and at the end of the fin, heat exchange occurs according to the Newton – Richmann law with the environment. The equation for the fin of a rectangular profile is an inhomogeneous modified Bessel equation. Its solution contains the Bessel functions of the imaginary argument of the first and second kind of zero order. The efficiency of the fin and the heat flow through the base of the fin are determined. The energy release in the fin increases its efficiency compared to the efficiency of the fin in the absence of energy release, and also reduces the heat flow. The restriction by the values of energy release in the fin is found as condition for the applicability of the finning. The fin efficiency must be less than one. If the efficiency exceeds one, the fin plays the opposite role: the flow is directed in the reverse side. In the article, an expression is obtained for the surface build-up coefficient kH. When calculating the heating (cooling) of a body with a finned surface, the heat transfer coefficient should be increased by kH times.
Keywords
surface finning, fins with energy release, extended surface, the annular fin, the efficiency of the fin, heat flow, heat conduction equation for a fin, modified Bessel functions
Article Text (PDF, in Russian)
References
- Kalinin E.K., Dreytser G.A., Jarkho S.A. Intensifikatsiya teploobmena v kanalakh [Intensification of heat transfer in the channels]. Moscow, Mashinostroenie Publ., 1990. 208 p.
- Shneyder P. Inzhenernye problemy teploprovodnosti [Engineering problems of thermal conductivity]. Moscow, Izdatel’stvo inostrannoy literatury Publ., 1960. 478 p.
- Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [The basics of heat transfer]. Moscow, Energiya Publ., 1977. 344 p.
- Kirillov P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernykh energeticheskikh ustanovkakh: Uchebnik dlya vuzov [Heat-and-mass transfer in nuclear power plants. Textbook for universities]. Moscow, Energoatomizdat Publ., 2000. 456 p.
- Kirillov P.L., Yur’ev Yu.S., Bobkov V.P. Spravochnik po teplogidravlicheskim raschetam (yadernye reaktory, teploobmenniki, parogeneratory) [Handbook on thermal-hydraulic calculations (nuclear reactors, heat exchangers, steam generators)]. Moscow, Energoatomizdat Publ., 1990. 360 p.
- Kutateladze S.S. Osnovy teorii teploobmena [The basics of heat exchange theory]. Moscow, Atomizdat Publ., 1979. 416 p.
- Levchenko V.A., Kashcheev M.V., Dorokhovich S.L., Zaytsev A.A. Kharakteristiki pryamogo rebra s energovydeleniem [Characteristics of a straight fin with energy release]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, no. 1, pp. 117–123. Available at: https://www.vant.ippe.ru/images/pdf/2021/issue2021-1-117-123.pdf (accessed 31.05.2021).
- Fikhtengol’ts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya. T. 2 [Course of differential and integral calculus. Vol. 2]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1966. 800 p.
- Piskunov N.S. Differentsial’noe i integral’noe ischisleniya. T. 1 [Differential and integral calculuses. Vol. 1.]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1978, 456 p.
- Kuznetsov D.S. Spetsial’nye funktsii [Special functions]. Moscow, Vysshaya shkola Publ., 1965. 424 p.
- Smirnov V.I. Kurs vysshey matematiki.T. 2 [Course of higher mathematics. Vol. 2]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1967. 656 p.
- Piskunov N.S. Differentsial’noe i integral’noe ischisleniya. T. 2 [Differential and integral calculuses. Vol. 2]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1976. 576 p.
- Kurosh A.G. Kurs vysshey algebry [Course of higher algebra]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1975. 432 p.
- Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady. Spetsial’nye funktsii [Integrals and series. Special functions]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1983. 752 p.
- Abramowitz M. and Stegun I.A. Spravochnik po spetsial’nym funktsiyam s formulami, grafikami i matematicheskimi tablitsami [Russ. ed.: V.А. Ditkina, L.N. Karmazinoy. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]. Moscow, Nauka Publ. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1979. 832 p.
UDC 536.21
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 4, 4:9