DOI: 10.55176/2414-1038-2021-4-121-130
Authors & Affiliations
Shlepkin A.S., Morozov A.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
 
 Morozov A.V. – Leading Researcher, Dr. Sci.  (Techn.).
  Shlepkin A.S. – Junior  Researcherg. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033.  Tel.: +7 (910) 598-02-94; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
The article presents an  overview of works on the experimental and computational study of the processes  of heat removal from heated surfaces using a water-air mixture. A sharp  increase in the heat transfer coefficient is shown even when adding water with  a mass content of 0.1 % to the air flow. The factors that  determine the efficiency of the heat exchange process are listed: the shape of  the water spray jet, the distance from the outlet point of the water-air flow  to the heat exchange surface, the characteristics of the heat exchange surface,  the method of jet formation, the size of droplets and the location of the  outlet points of the gas-droplet flow. The weak applicability of the data  available in the literature is shown for calculating the cooling of finned  tubes of industrial heat exchangers using a water-air mixture. It is  substantiated that in order to establish the most optimal cooling modes for  each for a separate heat exchange surface, it is necessary to conduct  experimental studies, due to the complexity of heat transfer processes and the  presence of a large number of influencing factors. It is shown that the finned  tubes of heat exchangers of the passive heat removal system of WWER-1200 have a  number of important features that affect the efficiency of their cooling using  a water-air mixture. An experimental setup has been developed and a technique  has been proposed for performing experiments to study these processes as  applied to heat exchangers of a passive WWER safety system. 
Keywords
 water aerosol,  air-water-mixture, combined cooling, heat exchangers, heat exchange, finned  tubes, modifying surfaces
Article Text (PDF, in Russian)
References
  - Abed A.N., Shcheklein  S.E., Pahaluev V.M. Intensifikaciya teploobmena vozdushnyh teploobmennikov  avarijnogo raskholazhivaniya i suhih gradiren AES s ispol'zovaniem vodovozdushnogo  aerozolya (tumana) [Intensification  of heat exchange of air heat exchangers for emergency cooling and dry cooling  towers of NPP using water-air aerosol (fog)]. Trudy XV Mezhdunarodnoy konferentsii  “Bezopasnost' AES i podgotovka kadrov” [Proc. of the XV Int. Conf. “NPP Safety and Training”]. 2018, pp. 16–27. 
- Yuting  Jiang, Qun Zheng, Ping Dong, Jianhui Yao, Hai Zhang, Jie Gao. Conjugate heat  transfer analysis of leading edge and downstream mist-air film cooling on  turbine vane. International Journal of Heat and Mass Transfer, 2015,  vol. 90, pp. 613–626. doi.org/10.1016/j.ijheatmasstransfer.2015.07.005. 
- Yan  Hou, Yujia Tao, Xiulan Huai, Yu Zou, Dongliang Sun. Numerical simulation of  multi-nozzle spray cooling heat transfer. International Journal of Thermal  Sciences, 2018, vol. 125, pp. 81–88.  doi.org/10.1016/j.ijthermalsci.2017.11.011. 
- Pahomov M.A., Terekhov  V.I. Enhancement of  turbulent heat transfer during interaction of an impinging axisymmetric mist  jet with a target. Journal of Applied Mechanics and Technical Physics, 2011, vol. 52, pp. 96–106. doi.org/10.1134/S0021894411010135. 
- Agnieszka  Cebo-Rudnicka, Zbigniew Malinowski, Andrzej Buczek. The influence of selected  parameters of spray cooling and thermal conductivity on heat transfer  coefficient. International Journal of Thermal Sciences, 2016, vol. 110,  pp. 52–64. doi.org/10.1016/j.ijthermalsci.2016.06.031.
- Zhou  Nianyong, Chen Fujiang, Cao Yuchun, Chen Mengmeng, Wang Yu. Experimental  investigation on the performance of a water spray cooling system. Applied  Thermal Engineering, 2017, vol. 112, p. 1117–1128. doi.org/10.1016/j.applthermaleng.2016.10.191.
- Niru  Kumari, Vaibhav Bahadur, Marc Hodes, Todd Salamon, Paul Kolodner, Alan Lyons,  Suresh V Garimella. Analysis of evaporating mist flow for enhanced convective  heat transfer. International Journal of Heat and Mass Transfer, 2010, vol. 53, issue 15–16, pp. 3346–3356. doi.org/10.1016/j.ijheatmasstransfer.2010.02.027.
- Xie  J.L., Tan Y.B., Duan F., Ranjith K., Wong T.N., Toh K.C., Choo K.F., Chan P.K..  Study of heat transfer enhancement for structured surfaces in spray cooling. Applied  Thermal Engineering, 2013, vol. 59, issue 1–2, pp. 464–472. doi.org/10.1016/j.applthermaleng.2013.05.047.
- Nazarov A.D., Serov A.F., Terekhov V.I. Vliyanie rezhima formirovaniya  kapel'noj fazy impul'snogo aerozolya na teploobmen [Influence of the regime of formation of the  droplet phase of a pulsed aerosol on heat transfer]. Trudy mezhdunarodnogo nauchnogo kongressa “Interekspo Geo-Sibir'”.[Proc. of the Int. Sci.  Congress “Interexpo Geo-Siberia”]. Novosibirsk, 2014, vol. 5, p. 239.
- Quinn  C., Murray D.B., Persoons T. Heat transfer behaviour of a dilute impinging  air-water mist jet at low wall temperatures. International Journal of Heat  and Mass Transfer, 2017, no. 111, p. 1234–1249. doi.org/10.1016/j.ijheatmasstransfer.2017.04.098.
- Malinowski  Z., Cebo-Rudnicka A., Telejko T., Hadała B., Szajding A. Inverse method  implementation to heat transfer coefficient determination over the plate cooled  by water spray. Inverse Probl. Sci. Eng., 2015, vol. 23, issue 3, pp. 518–556. doi.org/10.1080/17415977.2014.923417.
- Shanno  D.F. Conditioning of quasi-Newton methods for function minimization. Math.  Comput., 1970, vol. 24, no. 111, pp. 647–656.
- Liu  C.-S. Optimal algorithms and the BFGS updating techniques for solving  unconstrained nonlinear minimization problems. J. Appl. Math, 2014, vol. 1, Article ID 324181. doi.org/10.1155/2014/324181.
- Quinn  C., Murray D.B., Persoons T. The effect of liquid mass flow rate on heat  transfer for an air-water atomizing mist jet. Proc. of the 15th International  Heat Transfer Conference, IHTC-15, 2014, pp. 1.
- Li  X.C., Zhou J., Aung K. On selection of reference temperature of heat transfer  coefficient for complicated flows. Heat Mass Transf., 2009, vol. 45, pp. 633–643. 
- Garbero  M., Vanni M., Fritsching U. Gas/surface heat transfer in spray deposition  processes. Intern. J. Heat Fluid Flow, 2006, vol. 27, pp. 105–122. doi.org/10.1016/j.ijheatfluidflow.2005.04.003.
- Lacour  S.O.L., Trinquet F., Vendee P.E., Vallet A., Delahaye A., Fournaison L. Assessment  of the wet area of a heat exchanger exposed to a water spray. Applied  Thermal Engineering, 2018, vol. 128, pp. 434–443. doi.org/10.1016/j.applthermaleng.2017.09.030.
- Chakraborty  S., Rosen M.A., MacDonald B.D. Analysis and feasibility of an evaporative  cooling system with diffusion-based sessile droplet evaporation for cooling  microprocessors. Applied Thermal  Engineering, 2017, vol. 125, pp. 104–110. doi.org/10.1016/j.applthermaleng.2017.07.006. 
 
UDC 66.045.12
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 4, 4:11