DOI: 10.55176/2414-1038-2021-4-131-146
Authors & Affiliations
Zborovskii V.G.1,2,  Khoruzhii O.V.1,2, Likhanskii V.V.1,2, Elkin N.N.1, Chernetskii M.G.1 
1 National Research Center “Kurchatov  Institute”, Moscow, Russia
  2 Lebedev Physical Institute of the Russian Academy of Science, Moscow,  Russia
 
Zborovskii V.G. – Leading Researcher, Cand. Sci. (Phys.-Math.), Lebedev Physical Institute of the Russian  Academy of Science, Senior Researcher, National Research Center “Kurchatov  Institute”. Contacts: 1, Akademika Kurchatova pl.,  Moscow, 123182. Tel.: +7 (926) 569-38-48; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
     Khoruzhii O.V. – Leading Researcher, Dr. Sci. (Phys.-Math.).
 
     Likhanskii V.V. – Head of the Department, Dr. Sci. (Phys.-Math.).
 
Elkin N.N. – Leading Researcher, Dr.  Sci. (Phys.-Math.).
 Chernetskii M.G. — Engineer. 
Abstract
The paper  describes the software module FRC-SCP intended for thermohydraulic simulation  of a coolant under supercritical pressure (SCP) and a cooled fuel rod. Several  designs of supercritical water reactors utilize the transition of the coolant  from the pseudoliquid state to pseudogas while it is heated in the reactor  core. SCP coolant under pseudophase transition exhibits specific behavior as  its density changes significantly. Furthermore, coolant thermophysical  properties (density, heat capacity, viscosity, thermal conductivity) can also  vary across the coolant channel affecting heat transfer from the fuel rod to  the coolant and consequently the fuel temperature. Existing feedback  dependencies on coolant density and fuel temperature are important for the  nuclear safety analysis of the reactor. The paper considers the present version  of the FRC-SCP module. It implements the steady-state thermohydraulic channel  solver to calculate coolant parameters: temperatures of the flow core and a  heater, as well as coolant pressures, densities etc. User-specified  correlations define the heat transfer law under the normal conditions. The  module solves the thermal problem for the fuel rod consistently with the  channel thermohydraulic problem. It is also possible to couple the FRC-SCP  module with the neutron physical codes. Thermohydraulic module is tested  against experiments on the heat transfer to SCP water in heated tubes. We  discuss the behavior of the fuel cladding under conditions imitating the  deteriorated heat transfer modes and the effect of the nuclear fuel thermal  conductivity.
Keywords
coolant, fuel rod, nuclear fuel, cladding, supercritical  pressure, pseudophase transition, thermohydraulic simulation, heat transfer coefficient,  temperature field, experiments with heated tubes, deteriorated heat transfer  modes
Article Text (PDF, in Russian)
References
  - Kirillov P.L. Supercritical water  cooled reactors. Thermal Engineering, 2008, vol. 55, issue 5, pp. 361–364.
- Guzonas D., Novotny R. Supercritical water-cooled reactor  materials – Summary of research and open issues. Progress in Nuclear Energy,  2014, vol. 77, pp. 361–372.
- Novotny R., Guzonas D. Material research for the  supercritical water-cooled reactor – summary and open issues. Nuclear Corrosion. Woodhead Publishing, 2020. Pp.  403–435. doi: https://doi.org/10.1016/B978-0-12-823719-9.00012-3.
- Kirillov  P.L., Yur’ev Yu.S., Bobkov V.P. Spravochnik po teplogidravlicheskim raschetam  (yadernyye reaktory, teploobmenniki, parogeneratory) [Handbook of thermal-hydraulic  calculations (nuclear reactors, heat exchangers, steam generators)]. Moscow,  Atomenergoizdat Publ., 1990. 360 p.
- Mikheev M.A.,  Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer].  Moscow, Energiya Publ., 1977. 344 p. 
- Kutateladze S.S. Teploperedacha i gidrodinamicheskoye  soprotivleniye: Spravochnoye posobiye [Heat transfer and  hydrodynamic resistance: handbook]. Moscow, Energoatomizdat Publ., 1990.  367 p. 
- Deev V.I., Kharitonov V.S., Churkin A.N. Uchet peremennosti teplofizicheskikh  svoystv teplonositelya v uravnenii teplootdachi k vynuzhdennomu potoku vody  sverkhkriticheskogo davleniya [Taking into account the variability of the thermophysical properties of the  coolant in the equation of heat transfer to the forced flow of supercritical  pressure water]. Vestnik  natsional'nogo issledovatel'skogo yadernogo universiteta “MIFI” –  Bulletin of the National Research Nuclear  University “MEPhI”, 2014, vol. 3, no. 3, p. 353. 
- Löwenberg M.F. Wärmeübergang von Wasser in vertikalen Rohrströmungen  bei überkritischem Druck. Diss. Karlsruhe:  FZKA, 2007. 179 p. Available at: https://elib.uni-stuttgart.de/bitstream/11682/1749/1/Dissertation_M_Loewenberg.pdf  (accessed 17.11.2021).
- Loewenberg M.F. et al. Supercritical water heat transfer in  vertical tubes: A look-up table. Progress in  Nuclear  Energy, 2008, vol. 50, no. 2–6, pp. 532–538.
- Kurganov V.A. Teploobmen i  soprotivleniye v trubakh pri sverkhkriticheskikh davleniyakh teplonositelya. Ch.  1. Osobennosti teplofizicheskikh svoystv zhidkosti, gidrodinamiki i  teploobmena. Rezhimy normal'noy teplootdachi [Heat transfer and pressure drop  in tubes under supercritical pressure. Part 1: Specifics of the thermophysical  properties, hydrodynamics, and heat transfer of the liquid. Regimes of normal  heat transfer]. Teploenergetika – Thermal Engineering, 1998, vol. 45,  issue 3, pp. 2–10. 
- Kurganov V.A.,  Maslakova I.V. An integral method of calculation of stabilized heat transfer in  tubes in single-phase near-critical region. High Temperature, 2010, vol.  48, no. 4, pp. 541–554.
- Kurganov V.A.,  Maslakova I.V. Normal and deteriorated heat transfer upon heating of turbulent flows of heat carriers with variable physical properties in tubes. High  Temperature, 2016, vol. 54, no. 4, pp. 577–598.
- Petukhov B.S., Genin L.G., Kovalev  S.A., Soloviev S.L. Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat transfer in nuclear power plants]. Moscow, MEI Publ., 2003. 548 p. 
- Kurganov V.A. Teploobmen v trubakh pri  sverkhkriticheskikh davleniyakh teplonositelya: nekotoryye itogi nauchnogo issledovaniya  [Heat exchange in pipes at  supercritical heat carrier pressures: some results of scientific research]. Trudy RNKT-4 [Proc of RNKT-4]. Moscow, 2006, vol. 1, pp. 74–83.
- Kurganov V.A., Zeigarnik  Y.A., Maslakova I.V. Heat transfer and hydraulic resistance of supercritical pressure  coolants. Part III: Generalized description of SCP fluids normal heat transfer,  empirical calculating correlations, integral method of theoretical calculations. International Journal of Heat and Mass Transfer, 2013, vol. 67, pp. 535–547.
- Kurganov V.A. Heat  transfer and pressure drop in tubes under supercritical pressure. Part 2. Heat  transfer and friction at high heat fluxes. The influence of additional factors.  Enhancement of deteriorated heat transfer. Thermal engineering, 1998, vol. 45, no. 4, pp. 301–310.
- Kurganov V.A.,  Zeigarnik Y.A., Maslakova I.V. Heat transfer and hydraulic resistance of  supercritical pressure coolants. Part IV: Problems of generalized heat transfer  description, methods of predicting deteriorated heat transfer; empirical  correlations; deteriorated heat transfer enhancement; dissolved gas effects. International  Journal of Heat and Mass Transfer, 2014, vol. 77, pp. 1197–1212.
- Valueva E.P.  Numerical modeling of heat exchange and turbulent flow of fluid within tubes at  supercritical pressure. High Temperature, 2012, vol. 50, no. 2, pp. 278–285.
- Deev V.I., Rachkov V.I., Kharitonov  V.S., Churkin A.N. Analysis of relations for calculating normal heat transfer  to supercritical pressure water flow in vertical tubes. Atomic Energy,  2016, vol. 119, no. 3, pp. 169–176. 
- Deev V.I., Kharitonov V.S.,  Baisov A.M., Churkin A.N. Universal dependencies for the description of heat transfer  regimes in turbulent flow of supercritical fluids in channels of various  geometries. The Journal of Supercritical Fluids, 2018, vol. 135, pp. 160–167.
- Deev V.I.,  Kharitonov V.S., Baisov A.M., Churkin A.N. Heat transfer in rod bundles  cooled by supercritical water – Experimental data and correlations. Thermal  Science and Engineering Progress, 2020, vol. 15, p. 100435.
- Wang H.,  Bi Q.C., Wang L., Lv L., Leung L.K.H. Experimental  investigation of heat transfer from a 2×2 rod bundle to supercritical  pressure water. Nucl. Eng. Des., 2014, vol. 275, pp. 205–218.
- Wang H., Bi Q.,  Ni Z., Lv H., Gui M. Experiments of heat transfer to  supercritical water in a 2×2 rod bundle with wire-wrapped spacers. Proc. 7th  International Symposium on Supercritical Water Cooled Reactors (ISSCWR-7).  Helsinki, Finland, March 15–18, 2015, paper 2060.
- Wang H.,  Bi Q.C., Leung L.K.H. Heat transfer from a 2×2 wire-wrapped rod  bundle to supercritical pressure water. Int. J. Heat Mass Transf., 2016,  vol. 97, pp. 486–501.
- Gu H.Y.,  Hu Z.X., Liu D., Xiao Y., Cheng X. Experimental studies on heat  transfer to supercritical water in 2×2 rod bundle with two channels. Nucl.  Eng. Des., 2015, vol. 291, pp. 212–223.
- Hu Z.X., Li H.B., Tao J.Q., Liu D., Gu H.Y. Experimental  study on heat transfer of supercritical water flowing upward and downward in  2×2 rod bundle with wrapped wire. Ann. Nucl. Energy. 2018, vol. 111, pp. 50–58. 
- Churkin A.N. Neodnoznachnost' temperatury  obogrevayemoy stenki v potoke zhidkosti sverkhkriticheskogo davleniya [An ambiguity of the heated wall temperature in a supercritical pressure fluid  flow]. Voprosy atomnoy  nauki i tekhniki. Seriya: Obespecheniye bezopasnosti AES. Reaktornyye ustanovki  s VVER –  Problems of  Atomic Science and Technology. Series: NPP Safety Assurance. Reactor Plants  with WWER, 2011, vol. 30, pp. 122–125.
- Churkin A.N., Deev V.I.  Neodnoznachnost'  rezul'tatov rascheta teplootdachi k vode pri ispol'zovanii empiricheskikh  korrelyatsiy v oblasti sverkhkriticheskikh davleniy [Ambiguity of the  results of calculating heat transfer to water using empirical correlations in  the region of supercritical pressures]. Voprosy atomnoy nauki i tekhniki. Seriya: Obespecheniye bezopasnosti  AES. Reaktornyye ustanovki – Problems of Atomic Science and Technology. Series: NPP Safety  Assurance. Reactor Plants, 2012, vol. 32, pp. 65–75. 
- Wolery T.J. H2OI95:  A Stand-Alone Fortran Code for Evaluating the IAPWS-95 Equation-of-State Model  for Water (Rev. 1), LLNL-TR-805304, May 18, 2020.
- IAPWS R6-95(2018).  Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties  of Ordinary Water Substance for General and Scientific Use, September 2018.  Available at: http://www.iapws.org/release.html  (accessed 17.11.2021).
- IAPWS R12-08.  Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water  Substance, September 2008. Available at:  http://www.iapws.org/release.html (accessed 17.11.2021).
- IAPWS R15-11.  Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary  Water Substance, September 2011. Available at:  http://www.iapws.org/release.html (accessed 17.11.2021).
- Pernice M.,  Walker H.F. NITSOL: A Newton Iterative Solver for Nonlinear Systems. SIAM  J. Sci. Comput., 1998, vol. 19(1), pp. 302–318.
- Forsythe G.E.,  Malcolm M.A., Moler C.B. Computer methods for mathematical computations.  Prentice Hall, 1977. 259 p.
- Samarskii A.A.,  Andreev V.B. Raznostnyye  metody dlya ellipticheskikh uravneniy [Difference  methods for elliptic equations]. Moscow,  Nauka Publ., 1976. 352 p.
- Anderson E.,  Bai Z., Bischof C., Blackford S., Demmel J.,  Dongarra J., Du Croz J., Greenbaum A., Hammarling S.,  McKenney A., Sorensen D. LAPACK Users' Guide. 3rd  ed. SIAM, Philadelphia, PA, 1999.
- Ierusalimschy R.,  de Figueiredo L.H., Celes W. Lua 5.1 Reference Manual. Available  at: https://www.lua.org/manual/5.1/ (accessed 17.11.2021).
- Zborovskii V.  Lua (and Fortran) in thermomechanical simulations. Lua Workshop 2018, Kaunas,  Lithuania, 2018. Available at: https://www.lua.org/wshop18/Zborovskii.pdf (acccessed 17.11.2021).
- The HDF Group.  Hierarchical Data Format, version 5. Available at: http://www.hdfgroup.org/HDF5/ (accessed  17.11.2021). 
- Shitsman M.E. Ukhudshennyye rezhimy teplootdachi  pri zakriticheskikh davleniyakh [Impairment of  the heat transmission at supercritical pressures]. Teplofizika  vysokikh temperatur  –  High Temperature, 1963, vol. 1, pp. 237–244.
- Kirillov P.L,  Terent’eva M.I., Bogoslovskaja G.P., Churkin A.N. Banki eksperimental'nykh dannykh po  teplootdache k potoku vody sverkhkriticheskogo davleniya v trube [Experimental data banks on heat transfer to the supercritical pressure  water flow in a pipe]. Sb.  Trudy 9-y MNTK “Obespecheniye bezopasnosti AES s VVER” [Proc. of the 9th ISTC “Safety of NPP  with WWER”]. Podol'sk, 2015. Available at:  http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/autorun/article114-ru.htm  (accessed 11/17/2021). 
- Pis’menny E.N.,  Razumovskiy V.G., Maevskiy E.M., Koloskov A.E., Pioro I.L. Heat transfer  to supercritical water in gaseous state or affected by mixed convection in  vertical tubes. Proc. of ICONE14 Int.  Conf. on Nuclear Engineering.  Miami, Florida, USA, 2016, ICONE14-89483, pp. 523–530. Available at:  https://asmedigitalcollection.asme.org/ICONE/proceedings-abstract/ICONE14/42436/523/315859  (accessed 17.11.2021).
- Yamagata K.,  Nishikawa K., Hasegawa S., Fujii T., Yoshida S. Forced convective heat transfer  to supercritical water flowing in tubes. International Journal of Heat and Mass  Transfer, 1972, vol. 15, no. 12, pp. 2575–2593.
- Understanding and prediction  of thermohydraulic phenomena relevant to supercritical water cooled reactors  (SCWRs). Final report of a coordinated research project. IAEA-TECDOC-1900, Vienna,  2020. 546 p. Available at: https://www-pub.iaea.org/MTCD/publications/PDF/TE-1900web.pdf  (accessed 17.11.2021).
- Blinkov V.N.,  Gabaraev B.A., Melikhov O.I., Soloviev S.L. Nereshennyye problemy teplo- i massoobmena  vodookhlazhdayemykh reaktornykh ustanovok so sverkhkriticheskimi parametrami  teplonositelya [Unsolved problems of heat and mass transfer in  water-cooled reactors with supercritical parameters of a coolant]. Moscow, NIKIET Publ., 2008. 85 p.
- Kurganov V.A.,  Zeigarnik Yu.A., Yan’kov G.G., Maslakova I.V. Teploobmen i soprotivleniye v trubakh pri  sverkhkriticheskikh davleniyakh teplonositelya: itogi nauchnykh issledovaniy i  prakticheskiye rekomendatsii [Heat transfer and friction in tubes under  supercritical pressures of a coolant: results of scientific studies and  practical guidelines]. Moscow, “Shans” Ltd. Publ., 2018. 302 p.
- Grabezhnaya V.A.,  Kirillov P.L. Heat-transfer degradation boundary in supercritical-pressure flow. Atomic Energy, 2006, vol. 101, issue 4, pp. 714–721.
 
UDC 621.039.546:536.24
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 4, 4:12