Sakhipgareev A.R., Shlepkin A.S., Morozov A.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Recent concept designs of supercritical water-cooled reactors (SCWR), which are developed both in the Russian
Federation and abroad are presented in the paper. The analysis of the developed
projects of reactors with supercritical coolant parameters showed that in most
foreign countries, reactors with a thermal neutron spectrum are being designed
to solve the immediate problem – replacing light-water reactors. The big
majority of SCWR concept designs have one circulation circuit. This is due to
the fact that the single-circuit scheme of nuclear power plant (NPP) allows
abandoning steam generators and all equipment of the secondary-circuit, reducing
the specific quantity of metal by ~40–60%. It also becomes
possible to applying of the mastered serial equipment of the turbine island –
turbines and heaters, widely used in the thermal power industry in the present.
The volume of the containment is significantly reduced and, in general, the
capital costs of creating a power unit are reduced by
~20–30%, compared to existing NPPs.
1.
GIF R&D Outlook for Generation IV Nuclear
Energy Systems: 2018 Update. OECD Nuclear Energy
Agency, 2018. 96 p.
2.
Heat Transfer Behaviour and Thermohydraulics
Code Testing for Supercritical Water Cooled Reactors (SCWRs). IAEA-TECDOC-1746, International Atomic Energy Agency, Vienna, 2014.
510 p.
3.
Liu X.J., Cheng X. Sub-channel/system coupled
code development and its application to SCWR-FQT loop. Nuclear Engineering
and Design, 2015, vol. 285, p. 39.
4.
Mahin V.M., Churkin A.N., Vasil'chenko I.N.,
Lapin A.V., V'yalicyn V.V., Kurakin K.Yu., Kushmanov S.A., Semiglazov S.V.
Kontseptsiya aktivnykh zon VVER SKD: usloviya ekspluatatsii
tvelov, konstruktsiya TVS i kandidatnyye materialy [WWER SCW core concept: fuel rod operating
conditions, fuel assembly design and candidate materials]. Trudy 7-y mezhdunarodnoy nauchno-tekhnicheskoy konferentsii
“Obespecheniye bezopasnosti AES s VVER” [Proceedings of the 7th International Scientific and
Technical Conference “Safety Assurance of NPP with WWER”. Podolsk, Russia, 2011,
12 p. Available at:
http://www.gidropress.podolsk.ru/files/proceedings/mntk2011/documents/mntk2011-120.pdf
(accessed 06.12.2021).
5.
Liu X.J., Sun C., Wang Z.D., Chai X., Xiong J.B.,
Yang Y.H., Cheng X. Preliminary study to improve the performance of SCWR-M during
loss-of-flow accident. Nuclear Engineering and Design, 2016, vol. 307, p. 431.
6.
Sun P., Zhang J., Su G. Linear parameter-varying
modeling and control of the steam temperature in a Canadian SCWR. Nuclear
Engineering and Design, 2017, vol. 313, p. 225.
7.
Baisov A.M., Churkin A.N., Deev V.I., Kharitonov
V.S. Teploobmen v puchkakh
sterzhney, okhlazhdayemykh vodoy sverkhkriticheskogo davleniya (obzor opytnykh
dannykh i rekomendatsii po vyboru raschetnogo sootnosheniya) [Heat transfer in bundles of rods cooled with supercritical pressure
water (review of experimental data and recommendations for choosing a design
ratio)]. Trudy 11-y mezhdunarodnoy
nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER”
[Proc. of the 11th Int. Sci. and Tech. Conf.
“Safety Assurance of NPP with WWER”]. Podolsk, Russia, 2019,
10 p. Available at:
http://www.gidropress.podolsk.ru/files/proceedings/mntk2019/documents/mntk2019-043.pdf
(accessed 06.12.2021).
8.
Wu P., Yuan Y., Pan J., Shan J. The stability-analysis
code FIAT development for density wave oscillations and its application to
PV/PT SCWR. Annals of Nuclear Energy, 2017, vol. 110, p. 833.
9.
Yuan Y., Shan J., Wang L., Zhang X. Control and
thermal analysis for SCWR startup. Annals of Nuclear Energy, 2019, vol.
134, p. 27.
10. Baranaev Yu.D., Glebov A.P., Kirillov P.L., Klushin A.V. Reaktor, okhlazhdayemyy vodoy sverkhkriticheskogo davleniya,
VVER-SKD – osnovnoy pretendent v «Super-VVER» [The
supercritical water cooled reactor WWER-SKD – the main contender for the Super-VVER]. Trudy
7-y mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Obespecheniye
bezopasnosti AES s VVER” [Proceedings of the 7th
International Scientific and Technical Conference “Safety Assurance of NPP with
WWER”. Podolsk, Russia, 2011, 15 с. Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2011/documents/mntk2011-028.pdf
(accessed 06.12.2021).
11. Mokhov V.A., Berkovich V.Ya., Nikitenko M.P., Makhin V.M., Churkin
A.N., Lapin A.V., Kirillov P.L., Baranaev Yu.D., Glebov A.P. Kontseptual'nyye predlozheniya po stendu-prototipu reaktora
VVER-SKD [Conceptual proposals for the prototype stand of
the WWER-SKD reactor]. Trudy 9-y mezhdunarodnoy
nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER”
[Proceedings of the 9th International
Scientific and Technical Conference “Safety Assurance of NPP with WWER”].
Podolsk, Russia, 2015, 11 p. Available at http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/documents/mntk2015-155.pdf
(accessed 06.12.2021).
12. Semchenkov Yu.M., Silin V.A., Alekseev P.N., Chibinyaev A.V., Mitkin
V.V., Khlopov R.A. Integral'nyye reaktornyye ustanovki
s yestestvennoy tsirkulyatsiyey vody pri sverkhkriticheskom davlenii – RU SKDI
[Integral reactor plants with natural circulation of water
at supercritical pressure – RU
SKDI]. Trudy 9-y mezhdunarodnoy
nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER”
[Proceedings of the 9th International
Scientific and Technical Conference “Safety Assurance of NPP with WWER”].
Podolsk, Russia, 2015, 14 p. Available at:
http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/documents/mntk2015-100.pdf
(accessed 06.12.2021).
13. Status report – Chinese Supercritical Water-Cooled Reactor (CSR1000). International Atomic Energy Agency (IAEA), December 2015. 17 p.
14.
Makhin V.M. Kontseptual'nyye prorabotki reaktora so
sverkhkriticheskimi parametrami
[Conceptual studies of a supercritical reactor China CSR-1000]. Trudy 11-y mezhdunarodnoy
nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER”
[Proceedings of the 11th
International Scientific and Technical Conference “Safety Assurance of NPP with
WWER”]. Podolsk, Russia, 2019, 15 p. Available at:
http://www.gidropress.podolsk.ru/files/proceedings/mntk2019/documents/mntk2019-034.pdf
(accessed 06.12.2021).
15. Jiang C., Yu G., Tian W., Qiu S., Su G.H. Development of safety
analysis code for SCWR and its LOCA analysis of CSR1000. Nuclear Engineering
and Design, 2018, vol. 327, p. 100.
16. Status report 71 – Japanese Supercritical Water-Cooled Reactor
(JSCWR). International Atomic Energy Agency (IAEA),
April 2015. 12 p.
17. Nakatsuka T., Oka Y., Ishiwatari Y., Okumura K., Nagasaki S., Tezuka
K., Mori H., Ezato K., Akasaka N., Nakazono Y., Terai T., Muroya Y., Yamakawa
M. Current status of research and development of supercritical water cooled
fast reactor (Super Fast Reactor) in Japan. Technical Meeting on “Heat Transfer,
Thermal-Hydraulics and System Design for Supercritical Water Cooled Reactors”.
Pisa, Italy, 5–8 July 2010, p. 46.
18. Schulenberg T., Starflinger J. (eds.). High Performance Light Water Reactor. Design and Analyses. KIT
Scientific Publishing, 2012. 258 p.
19. Status report 109 – High Performance Light Water Reactor (HP-LWR). International Atomic Energy Agency (IAEA), 2011. 21 p.
20. Schulenberg T., Starflinger J., Marsault P., Bittermann D.,
Maráczy C., Laurien E., Lycklama à Nijeholt J.A., Anglart
H., Andreani M., Ruzickova M., Toivonen A. European supercritical water cooled
reactor. Nuclear Engineering and Design, 2011, vol. 241, p. 3505.
21. Temesvári E., Maráczy C., Hegyi G., Hordósy G.,
Molnár A. HPLWR Fine Mesh Core Analysis. Proceedings of the 7th
International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-7).
Helsinki, Finland, 15–18 March 2015, p. 11.
22. Fischer K. Design of a Supercritical
Water – Cooled Reactor – Pressure Vessel and Internals. Dr. Eng. Sci. Diss. Research Center Karlsruhe GmbH, Karlsruhe,
2008. 140 p.
23. Hummel D.W., Novog D.R. Coupled 3D neutron kinetics and
thermalhydraulic characteristics of the Canadian supercritical water reactor. Nuclear
Engineering and Design, 2016, vol. 298, p. 78.
24. Wu Y., Novog D.R. Prediction of response of the Canadian super
critical water reactor to potential loss of forced flow scenarios. Proceedings
of the 7th International Symposium on Supercritical Water-Cooled
Reactors (ISSCWR-7). Helsinki, Finland, 15–18 March 2015, p. 26.
25. Moghrabi A., Novog D.R. Determination of the optimal few-energy
group structure for the Canadian Super Critical Water-cooled Reactor. Annals
of Nuclear Energy, 2018, vol. 115, p. 27.
26. Sharpe J.R., Buijs A. Practical environment-corrected discontinuity
factors and homogenized parameters for improved PT-SCWR neutron diffusion
solutions. Annals of Nuclear Energy, 2018, vol. 111, p. 101.
27. Leung L.K.H., Nava-Dominguez A. Thermal-hydraulics program in
support of Canadian SCWR concept development. Journal of Nuclear Engineering
and Radiation Science, 2018, vol. 4, p. 011002.
28. Schulenberg T., Leung L.K.H., Brady D., Oka Y., Yamada K., Bae Y., Willermoz
G. Supercritical Water-Cooled Reactor (SCWR) Development through GIF
Collaboration. Proc. of the Int. Conf. on Opportunities and Challenges for
Water Cooled Reactors in the 21 Century. Vienna, Austria, 27–30 Oct 2009,
IAEA-CN-164-5S06, p. 9.
29. Buongiorno J., MacDonald P.E. Supercritical Water-Cooled Reactor
(SCWR). Progress Report for the FY-03 Generation-IV R&D Activities for
the Development of the SCWR in the U.S. INEEL\EXT-03-01210, 2003. P. 38.
30. McCreery G.E., Buongiorno J., Condie K.G., McEligot D.M., Nitzel
M.E., O’Brien J.E. The INEEL Heat Transfer Flow Loop for Development of
Supercritical-Pressure Water Reactors (SCWRs). Proc. of GENES4/ANP2003:
International Conference on Global Environment and Advanced Nuclear Power
Plants. Kyoto, Japan, 15–19 September 2003, p. 8.
31. Zhu D., Tian W., Zhao H., Su Y., Qiu S., Su G. Comparative study of
transient thermal-hydraulic characteristics of SCWRs with different core
design. Annals of Nuclear Energy, 2013, vol. 51, p. 135.