Sorokin A.P., Kuzina Yu.A., Berensky L.L., Denisova N.F., Tikhomirov B.B.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
A description is presented of the developed
methodology and program for calculating the maximum temperature of the cladding
of fuel elements and temperature irregularity along the perimeter of fuel
elements in the fast reactors fuel assembly taking into account interchannel
exchange with the distribution of channel cross-sections and heat generation of
fuel elements according to a random law using the Monte Carlo method.
Investigations of the temperature field with a random distribution of the flow
cross-sections of the channels and the heat generation of the fuel elements
showed that the averaged values of the maximum cladding temperature of the fuel
elements are in the interval between the corresponding values for the tightly
compressed and maximally extended bundle, and the averaged values of the
temperature nonuniformity along the perimeter of the fuel elements are higher
than when calculated using the average bundle parameters. Interchannel exchange
to a certain degree aligns the temperature field on the periphery of the fuel
assembly and to a large degree aligns local irregularities due to random
changes in parameters. It is shown that the standard deviation of the maximum
temperature of the cladding of fuel elements is 3.7% of the value (), and the standard deviation of the
temperature irregularity along the perimeter of the fuel elements is 12% of
the maximum temperature irregularity along the perimeter of the fuel elements
in the fuel assembly. It is recommended to carry out calculations of the
maximum fuel element cladding temperature using the average statistical
parameters of the bundle. The dispersion of the maximum surface temperature of
the fuel elements should be calculated with a general change in the flow cross
sections of the channels and the heat generation of the fuel elements, and not
as a superposition under the separate action of these parameters. The
calculated value of the overheating factor, assessed by existing methods,
should be refined using the results obtained.
1.
Goverdovskii A.A., Kalyakin S.G., Rachkov V.I. The alternative strategies of the development of the nuclear power
industry in the 21st century. Thermal Engineering, 2014, issue 5,
pp. 319–326.
2.
Ponomarev-Stepnoy N.N. Two-Component Nuclear
Power System with a Closed Nuclear Fuel Cycle Based on BN and WWER Reactors. Atomic
Energy, 2016, vol. 120, issue 4, pp. 233–239.
3.
Asmolov V.G., Zrodnikov A.V., Solonin M.I.
Innovative development of nuclear energy in Russia. Atomic energy, 2007,
vol. 103, issue 3, pp. 665–674.
4.
Bagdasarov Yu.E., Pinkhasik M.S., Kuznetsov I.A.
et al. Tekhnicheskiye problemy reaktorov na bystrykh neytronakh. Pod
red. Yu.Ye. Bagdasarova [Technical problems of fast neutron reactors. Ed.
Bagdasarov Yu.E.]. Moscow, Atomizdat Publ., 1969. 611 p.
5.
Walters A., Reynolds A. Fast breeder reactors.
New York, Pergamon Press, 1981, 878 p.
6.
Bagdasarov Yu.E., Vasiliev B.A., Kamanin Yu.L.,
Osipov S.L., Kuzavkov N.G., Ershov V.N., Ashirmetov M.R. Concept of an advanced
power-generating unit with a BN-1200 sodium-cooled fast reactor. Atomic
Energy, 2010, vol. 108, issue 4, pp. 254–259.
7.
Klemin A.I., Polyanin L.N., Strigulin M.M. Teplogidravlicheskiy
raschet i teplotekhnicheskaya nadozhnost' yadernykh reaktorov [Thermal
hydraulic calculation and thermotechnical reliability of nuclear reactors]. Moscow,
Atomizdat Publ., 1980. 261 p.
8.
Kazachkovsky O.D., Sorokin A.P., Zhukov A.V.,
Ushakov P.A., Kriventsev V.I., Titov P.A. Stokhasticheskiye neravnomernosti
temperaturnykh poley v formoizmenennykh TVS bystrykh reaktorov [Stochastic
irregularities of temperature fields in shaped fuel assemblies of fast
reactors]. Preprint FEI-1678 – Preprint IPPE-1678. Obninsk, IPPE Publ.,
1985.
9.
Gordeev S.S., Sorokin A.P. Teplogidravlicheskiy
raschet aktivnoy zony reaktorov na bystrykh neytronakh s uchetom vliyaniya
razlichnykh faktorov [Thermal-hydraulic calculation of the core of fast neutron
reactors taking into account the influence of various factors]. Voprosy
atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of
Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2016,
issue 4. Available at: http://vant.ippe.ru/archiv/year2016.html
(accessed 22.01.2022).
10. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v
TVS bystrykh reaktorov: raschetnyye programmy i prakticheskiye prilozheniya
[Interchannel exchange in fuel assemblies of fast reactors: computational
programs and practical applications]. Moscow, Energoatomizdat Publ., 1991. 224 p.
11. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v
TVS bystrykh reaktorov: teoreticheskiye osnovy i fizika protsessa
[Interchannel exchange in fuel assemblies of fast reactors: theoretical
foundations and physics of the process]. Moscow, Energoatomizdat Publ., 1989.
130 p.
12. Zhukov A.V., Sorokin A.P., Titov P.A., Ushakov P.A. Analysis of the
fast reactors' fuel-rod bundle flow resistance. Atomic Energy, 1986,
vol. 60, issue 5, pp. 369–374.
13. Metodicheskiye ukazaniya i rekomendatsii po teplogidravlicheskomu
raschetu aktivnykh zon bystrykh reaktorov. Rukovodyashchiye tekhnicheskiye
materialy (RTM) 1604.008-88. [Methodical
instructions and recommendations for thermohydraulic calculation of fast
reactor cores]. Guiding technical materials (GTM) 1604.008-88. Approved and put
into effect by the State Committee for the Use of Atomic Energy on 13.10.88,
No. GK-6627/19. Obninsk: ONTI FEI Publ., 1989.
14. Efanov A.D., Sorokin A.P., Zhukov A.V. Teplogidravlicheskiy analiz
aktivnoy zony yadernykh reaktorov s zhidkometallicheskim okhlazhdeniyem. Chast'
II. [Thermal Hydraulic Analysis of the Core of Liquid Metal Cooled Nuclear
Reactors. Part II.] Teplovyye protsessy v tekhnike – Thermal
Processes in Technology, 2009, vol. 1, no. 8, pp. 318–331.
15. Kurbatov I.M., Tikhomirov B.B. Raschot sluchaynykh otkloneniy
temperatur v aktivnoy zone reaktora [Calculation of random temperature
deviations in the reactor core] Preprint FEI-1090 – Preprint IPPE-1090.
Obninsk, ONTI FEI Publ., 1980.
16. Carelli M.D., Friedland A.J. Hot Channel Factors for Rod
Temperature Calculations in LMFBR Assemblies. Nuclear Engineering and Design,
1980, vol. 62, no. 2, pp. 155–180.
17. Tikhomirov B.B., Poplavsky V.M. Vliyaniye statisticheskikh
kharakteristik puchka tvelov TVS na otsenku temperaturnogo rezhima aktivnoy
zony bystrogo natriyevogo reaktora [Influence of statistical characteristics of
a bundle of fuel elements of fuel assemblies on the assessment of the
temperature regime of the active zone of a fast sodium reactor]. Izvestiya
vuzov. Yadernaya energetika, 2014, no. 2, pp. 128–139.
18. Kazachkovsky O.D., Sorokin A.P., Zhukov A.V. et al. Metod
sosredotochennykh parametrov v zadache o temperaturnom pole v formoizmenennykh
TVS s neadiabaticheskimi granichnymi usloviyami [The method of lumped
parameters in the problem of the temperature field in shaped fuel assemblies
with non-adiabatic boundary conditions]. Preprint FEI-1672 – Preprint
IPPE-1672, Obninsk, ONTI FEI Publ., 1985.
19. Bogoslovkaya G.P., Sorokin A.P., Zhukov А.V. LMFR
core and heat exchanger thermohydraulic design: Former USSR and present Russian
approaches. IAEA-TECDOC-1060, Vienna: IAEA, 1099.
20. Knuth D.E. The Art of Computer Programming (Seminumerical Algorithms).
Vol. 2, Addison-Wesley, 1977.