Makhin V.M., Podshibyakin A.K.
Experimental and Design Organization “GIDROPRESS”, Podolsk, Russia
Phenomena are considered with signs of “cliff edge effects” as per definitions of IAEA and NP-001-15: degradation of the protective barrier – fuel rod claddings in surface boiling mode with depositions of impurities and
borates on their surface and heating – up of claddings as well as the mode with departure from nucleate boiling on the fuel rod cladding. In spite of the fact
that the first phenomenon was previously unknown, safety of the Unit is ensured
by decisions made in the project. The mode with DNB was studied and measures
were taken in project of reactor plant not allowing DNB under normal operating
conditions and anticipated operational occurrences. Protection against DNB is
obviously ensured by decrease in the reactor power due to operation of control
systems and scram. The phenomena do not take place until they reach the state
of “cliff edge effects” (as per terminology of IAEA and federal RF NP) and they
are prevented at the initial stages. The reactor self-protection against DNB
development can be implemented for a small size reactor, which is partial
washing out of fuel with insertion of negative reactivity with subsequent
decrease in power and DNB termination.
1.
Bezopasnost' atomnykh
elektrostantsiy: proyektirovaniye
[Safety of Nuclear Power Plants: Design].
Vienna, IAEA, 2016, STI/PUB/1715. Available
at: https://www-pub.iaea.org/MTCD/Publications/PDF/P1715_R_1rev1_web.pdf
(accessed 09.11.2021).
2.
NP-001-15. Obshchiye
polozheniya obespecheniya bezopasnosti atomnykh stantsiy. Rukovodstvo po
bezopasnosti pri ispol'zovanii atomnoy energii. Kommentarii k FNP (RB-152-18) [General provisions for ensuring the safety of
nuclear power plants. NP-001-15. Guidelines
for Safety in the Use of Atomic Energy. Comments
on FNP (RB-152-18)].
3.
Reshetnikov F.G.,
Bibilashvili Yu.K., Golovnin I.S. et al. Razrabotka, proizvodstvo i
ekspluatatsiya teplovydelyayushchikh elementov energeticheskikh reaktorov. Kn.
1. [Development, production and operation of fuel elements of power
reactors. Book 1]. Moscow, Energoatomizdat
Publ., 1995. 320 p.
4.
Kritsky V.G., Rodionov
Yu.A., Berezina I.G., Gavrilov A.V. Vliyaniye ekspluatatsionnykh i
vodno-khimicheskikh parametrov na otlozheniya produktov korrozii na
poverkhnostyakh tvelov [Influence of operational and water-chemical parameters
on the deposition of corrosion products on the surfaces of fuel elements]. Trudy
VII MNTK “Obespecheniye bezopasnosti AES s VVER” [Proc. of the VII Int.
Sci. Tech. Conf. “Safety of WWER”]. Podolsk, 2011. Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2011/documents/mntk2011–068.pdf
(accessed 09.11.2021).
5.
Optimization of Water
Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and
in Ageing Plant (FUWAC). Vienna, IAEA, 2011. Pр. 93–97.
6.
Kritskiy V.G., Rodionov
YU.A., Berezina I.G., Gavrilov A.V. Osobennosti
massoperenosa i formirovaniya otlozheniy v aktivnoy zone AES s VVER bez
vysokotemperaturnykh fil'trov [Mass
Transfer Peculiarities and Deposits Formation in the Core of NPP with WWER Without
High-Temperature Filters]. Trudy VIII MNTK “Obespecheniye
bezopasnosti AES s VVER” [Proc. of the VIII Int. Sci. Tech. Conf. “Safety
of WWER”]. Podolsk, 2013. Available
at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2013/documents/mntk2013-089.pdf
(accessed 09.02.2022).
7.
Bennett P., Beverskog B.,
Suther R. Halden In-Reactor Test to Exhibit PWR Axial Offset Anomaly.
United States, 2004. Available at: https://www.osti.gov/servlets/purl/837201 (accessed 09.11.2021). DOI: 10.2172/837201.
8.
Jim Henshaw, John C McGuire
and Howard E Sims et al. The Chemistry of Fuel Crud Deposits and Its Effect
on AOA in PWR Plants. 2006. Available at:
https://www.nrc.gov/docs/ML0633/ML063390145.pdf (accessed 09.11.2021).
9.
Zabelin A.I., Gordienko
N.I., Svyatysheva T.S. Vliyaniye bornoy kisloty na zhestkost' teplonositelya
kipyashchego reaktora [Influence of boric acid on the hardness of the boiling
water reactor coolant]. Trudy Simpoziuma SEV “Vodnyye rezhimy vodo-vodyanykh
reaktorov, radiatsionnyy kontrol' teplonositeley i sredstva snizheniya
radiatsionnoy opasnosti teplonositeley” [Symposium CMEA “Water modes of
pressurized water reactors, radiation monitoring of coolants and means of
reducing the radiation hazard of coolants”]. Gera, GDR, November 10–16, 1968. Pp. 90–94.
10.
Zenkevich B.A., Kozlov
V.Ya., Kochetkov L.A., Peskov O.L. Heat transfer crisis in a reactor. Atomic
Energy, 1969, vol. 27, issue 5, pp. 1168–1172. Available at:
https://link.springer.com/content/pdf/10.1007/BF01164966.pdf (accessed
09.11.2021).
11.
Bobrov S.N. Metodiki i
rezul'taty reaktornykh issledovaniy tvelov dlya obosnovaniya bezopasnosti
ekspluatatsii issledovatel'skogo reaktora SM-2. Avtoreferat diss. kand.
tekh. nauk [Methods and results of reactor studies of fuel elements to
substantiate the safety of operation of the SM-2 research reactor. Abstract of diss. cand. tech. sci.]. Nizhny Novgorod, 2004.
24 p.
12.
Bobrov S.N., Grachev A.F.,
Makhin V.M., Spiridonov Yu.G. et al. Opyt ekspluatatsii i rabotosposobnost'
tvelov vysokopotochnogo reaktora SM-2 [Experience of operation and
serviceability of fuel elements of the high-flux reactor SM-2]. Sbornik
dokladov Pyatoy Mezhotraslevoy konferentsii po reaktornomu materialovedeniyu.
T. 1, ch. 2. Toplivo, tvely i pogloshchayushchiye materialy [Proc. of the
5th Interbranch Conf. on Reactor Materials Science. Vol. 1, part 2. Fuel, Fuel
Elements and Absorbing Materials]. Dimitrovgrad, September 8–12, 1997. Dimitrovgrad: RIAR Publ., 1998, pp. 10–19.
13.
Bobrov S.N., Grachev A.F.,
Makhin V.M., Spiridonov Yu.G. Izucheniye povedeniya tvelov reaktora SM v
rezhime krizisa [SM reactor fuel elements behavior research in the heat
transfer crisis mode]. Trudy mezhdunarodnoy konferentsii “Teplofizicheskiye
aspekty bezopasnosti VVER: Teplofizika-98” [Proc. of the Int. Conf.
“Thermal and physical aspects of WWER safety: “Thermophysics-98”]. Obninsk,
IPPE, 1998, vol. 1, pp. 411–417.
14.
Bobrov S.N., Alekseev A.V.,
Makhin V.M., Svyatkin M.N. O kharakteristikakh tvela issledovatel'skogo
reaktora SM v rezhimakh s krizisom teploobmena. Sbornik trudov [On the
characteristics of the fuel element of the SM research reactor in regimes with
a heat exchange crisis. RIAR Proc. Vol. 2]. Dimitrovgrad, RIAR Publ., 2004. Pp. 22–26.
15.
Kirillov P.L. Sovremennyye
puti razvitiya teorii krizisa teploobmena pri kipenii v kanalakh [Modern ways of
development of the heat transfer crisis theory during boiling in channels]. Trudy
Fiziko-energeticheskogo instituta [Proc. of the IPPE], Moscow, Atomizdat
Publ., 1974. Pp. 242–262.
16.
Isachenko V.P., Osipova
V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energiya Publ, 1975. Pp. 322–328.
17.
Averyanov S.V., Kutyin L.N.,
Trusov B.A., Shcherbakov A.P. Osobennosti zakrizisnogo teploobmena v
mnogosterzhnevykh puchkakh [Features of supercritical heat transfer in
multi-rod beams]. Sbornik dokladov mezhotraslevoy konferentsii
“Teplofizika-89” [Proc. of the Interbranch Conf. “Thermophysics-89”]. Obninsk, November 21–23, 1989.
Obninsk, IPPE Publ., 1992, pp. 90–94.
18.
Guidance for the
Application of an Assessment Methodology for innovative Nuclear Energy Systems. IAEA-TECDOC-1575,
Rev. 1. Vienna, IAEA, 2008. 153 p.
19.
Kochetkov L.A. Pervyye
beloyarskiye [First Beloyarsk NPP]. Available at:
http://www.atominfo.ru/newsh/o0800.htm (accessed 09.11.2021).
20.
Kochetkov L.A. K istorii
pervoy ocheredi Beloyarskoy AES. Istoriya atomnoy energetiki Sovetskogo Soyuza
i Rossii. Vyp. 1 [On the history of the first stage of the Beloyarsk NPP.
History of the atomic energy of the Soviet Union and Russia. Issue. 1]. Moscow, IzdAt Publ., 2001. Pp. 117–133.
21.
Considerations on the
application of the IAEA safety requirements for the design of nuclear power
plants. IAEA-NECDOC–1791, Vienna, IAEA, 2016. Available at:
https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1791_web.pdf (accessed
09.11.2021).