Ivanov K.D., Niyazov S.-A.S., Osipov A.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Some features of the oxidation of structural
steels in HLMC, associated with the presence of iron impurities in these heat
carriers, are considered. The influence of this impurity on the oxidative
potential of the coolant and on the oxidation rate of structural steels is
demonstrated using specific examples.
A mechanism for the formation of an external oxide layer in the form of
a non-stoichiometric magnetite of variable composition in the HLMC is proposed
as a result of the combined action of the processes of condensation of iron
monoxide and a chemical reaction involving oxygen in the form of lead monoxide.
It is shown that
within the framework of this mechanism, the quantitative characteristics of the
observed experimental dependences of the oxidation rates of various steels as a
function of the partial pressure of oxygen in the HLMC are explained.
Currently, the
main parameter that determines the oxygen regime of the coolant is not the
total oxygen content, but its thermodynamic activity (TDA). This value is a
certain way, normalized partial pressure of oxygen, which is measured by special
sensors of thermodynamic activity of oxygen (DAC).
When studying the
process of oxidation of steels to study its mechanism and the kinetics of the
flow, one of the determining parameters is the rate of oxidation of steel,
which largely determines the resource of its operation in contact with HLMC, as
well as the amount of oxygen introduced into the coolant necessary to maintain
the required oxygen regime. At the same time, establishing the relationship of
this parameter with the value of oxygen TDA or with the partial pressure of
oxygen is one of the important tasks of these studies.
The phenomenon of
changing the mechanism of oxidation of steels in HLMC with a decrease in the
partial pressure of oxygen below the “critical” value is analyzed. It is shown
that it is associated with the process of increasing the TDA of the iron
impurity in the coolant and with a corresponding decrease in the flow of iron
from steel to the outer boundary of the oxide layer.
1. Gorynin I.V., Karzov G.P., Markov V.G.
Konstruktsionnyye materialy dlya energeticheskikh ustanovok s tyazhelymi
zhidkimi metallami v kachestve teplonositeley [Structural materials for power
plants with heavy liquid metals as heat carriers.]. Sbornik dokladov
konferentsii TZHMT [Proc. of the HLMC-1998 Conf.]. Obninsk, IPPE Publ.,
1999, vol. 1, pp. 128–135.
2. Martynov, P.N., Ivanov K.D., Salaev S.V.,
Korotkov V.V., Emeliantseva Z.I. Otrabotka metodiki opredeleniya potoka
metallicheskikh komponentov iz konstruktsionnykh staley reaktornykh ustanovok
[Development of a methodology for determining the flow of metal components from
structural steels of reactor installations]. Tezisy dokladov mezhotraslevoy
konferentsii [Proc. of the Interbranch Conference]. Obninsk, 2002, vol. 1, pp. 150–151.
3. Martynov P.N., Ivanov K.D., Salaev S.V. Otsenka
diffuzionnogo vykhoda metallicheskikh komponentov iz konstruktsionnykh staley
pri ikh ekspozitsii v tyazhelykh teplonositelyakh [Evaluation of the diffusion
yield of metal components from structural steels during their exposure in heavy
heat carriers]. Tezisy dokladov konferentsii TZHMT [Proc. of the HLMC
Conference]. Obninsk, IPPE Publ., 2003, pp. 91–92.
4. Ivanov K.D., Lavrova O.V., Salaev S.V.
Ispol'zovaniye razrabotannoy metodiki eksperimental'noy otsenki diffuzionnogo
vykhoda metallicheskikh komponentov iz staley dlya izucheniya korrozionnoy
stoykosti etikh staley v tyazhelykh teplonositelyakh [Using the developed
method of experimental evaluation of the diffusion yield of metal components
from steels to study the corrosion resistance of these steels in heavy heat
carriers]. Tezisy dokladov mezhotraslevoy tematicheskoy konferentsii
[Proc. of the Intersectoral Thematic Conference]. Obninsk, 2005, pp. 117–118.
5. Kulikov I.S. Termodinamika oksidov.
Spravochnik [Thermodynamics of oxides. Handbook]. Moscow, Metallurgiya Publ., 1986. 344 p.
6. Ivanov K.D., Lavrova O.V., Salaev S.V. Zhelezo
kak ingibitor kislorodnoy korrozii staley v tyazholykh teplonositelyakh [Iron
as an inhibitor of oxygen corrosion of steels in heavy heat carriers]. Tezisy
dokladov mezhotraslevoy tematicheskoy konferentsii [Proc. of the
Intersectoral Thematic Conference]. Obninsk, 2005, pp. 119–120.
7. Lavrova O.V., Ivanov K.D., Udintsev P.A.,
Niyazov S.-A.S. Sovremennyye podkhody k normirovaniyu parametra
termodinamicheskoy aktivnosti kisloroda v tyazhelykh teplonositelyakh [Modern
approaches to the normalization of the parameter of thermodynamic activity of
oxygen in heavy heat carriers]. Tezisy dokladov mezhotraslevogo seminara
[Proc. of the Intersectoral Seminar]. Obninsk, 2010, pp. 47–48.
8. Kireev V.A. Kratkiy kurs fizicheskoy khimii
[A short course of physical chemistry]. Moscow, Khimiya.
1978. 622 p.
9. Ivanov K.D., Lavrova O.V., Salaev S.V.
Rezul'taty eksperimentov po titrovaniyu kislorodom rasplavov svintsa i
svintsa-vismuta [Results of experiments on oxygen titration of lead and
lead-bismuth melts]. Tezisy dokladov mezhotraslevoy tematicheskoy
konferentsii [Proc. of the Intersectoral Thematic Conference]. Obninsk,
2005, pp. 115–116.
10. Alekseev V.V., Orlova E.A., Kozlov F.A. Modelirovaniye protsessov
massoperenosa i korrozii staley v yadernykh energeticheskikh ustanovkakh so
svintsovym teplonositelem (chast' 2. Razrabotka odnomernoy modeli
massoperenosa) [Modeling of mass transfer and corrosion of steels in nuclear
power installations with lead coolant (part 2. Development of a one-dimensional
mass transfer model)]. Preprint FEI-3154 – Preprint IPPE-3154. Obninsk, IPPE
Publ., 2009.
11. Alekseev V.V., Orlova E.A. Otsenki perenosa i raspredeleniya vzvesey
produktov korrozii v pervom konture yadernogo reaktora [Estimates of the
transfer and distribution of suspensions of corrosion products in the first
circuit of a nuclear reactor]. Tezisy dokladov NTK Teplofizika-2011
[Proc. of the Sci. and Tech. Conf. Thermophysics-2011]. Obninsk, IPPE Publ., 2011, pp. 194–196.
12. Chen H., Chen Y., Chang Y. Cellular Аutomaten modeling on the
corrosion/oxidation mechanism of steel in liquid metal environment. Progress
in Nuclear Energy, 2008, vol. 50, pp. 587–593.
13. Martinelli L., Oxidation of steels in liquid lead-bismuth: Oxygen
control to achieve efficient corrosion protection. Nuclear Engineering and
Design, 2011, vol. 241, pp. 1288–1294.
14. Osipov A.A., Ivanov K.D., Niyazov S.-A.S. Raschetnaya
model' vzaimodeystviya primesey zheleza i kisloroda v tyazhelykh
zhidkometallicheskikh teplonositelyakh [Computational model of the interaction
of iron and oxygen impurities in heavy liquid metal heat carriers]. Voprosy
atomnoy nauki i tekhniki. Seriya: yaderno-reaktornyye konstanty – Problems of
Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2018,
no. 4, pp. 215–224.
15. Osipov A.A., Ivanov K.D., Askhadullin R.Sh. Ravnovesnaya model' dissotsiatsii soyedineniy [Equilibrium model of compound dissociation]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornyye
konstanty – Problems of Atomic Science and Technology. Series: Nuclear and
Reactor Constants, 2018, no. 5, pp. 239–251.
16. Ivanov K.D., Niyazov S.-A.S., Cheporov R.Yu. Increase the
information content of control of thermodynamic activity of oxygen in heavy
liquid metal coolants. Voprosy atomnoy nauki i tekhniki. Seriya:
yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology.
Series: Nuclear and Reactor Constants, 2018, no. 5,
pp. 5–12.
17. Ivanov K.D., Lavrova O.V. Niyazov S.-A.S. Approaches to modeling
steel oxidation processes in HLMC. Voprosy atomnoy nauki i tekhniki. Seriya:
yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology.
Series: Nuclear and Reactor Constants, 2016, no. 5, pp. 208–218.
18. Steiner H., Modeling of oxidation of structural materials in LBE
systems. J. of Nucl. Mater, 2008, no. 374, pp. 211–219.
19. Staito M. Oxidation of SUS 316 stainless steel for fast breeder fuel
cladding under oxygen pressures controlled by Ni/NiO oxygen buffer. J. of
Nucl. Mater., 1985, no. 135, pp. 11–17.
20. Li N. Active control of oxygen in molten lead-bismuth eutectic
systems to prevent steel corrosion and coolant contamination J. of Nucl.
Mater, 2002, no. 300, pp. 73–81.
21. Zhang J., Li N. Analysis on liquid metal corrosion-oxidation
interactions. Corrosion Science, 2007, vol. 49, pp. 4154–4184.