Kazantsev A.A., Yuriev Yu.S., Supotnitskaya O.V., Astakhova N.E.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The work presents a method for obtaining a
system of equations of fluid dynamics in a porous body approximation designed
to calculate the reactor core of nuclear power plants and heat exchangers. In
computational fluid dynamics, there is a separate area in which, instead of the
Navier – Stokes equations, a calculation technique is used that uses the
approximation of a porous body for bundles of heat exchanger rods, or for fuel
rod assemblies of reactor core of nuclear power plants. At the same time, the
equations of fluid dynamics in a porous body approximation have evolved from
the equations of nonlinear filtration in an anisotropic porous body to a modern
form. Additionally, the effects of some physical phenomena in the tube bundles
are taken into account: the influence of inertial forces that noticeably
disturb the picture of the flow; significant effects of the attached mass to
the “skeleton” of the porous body, inter-channel interaction in the connected
channels; a significant contribution of volumetric resistance forces; a
significant influence of Archimedes force in natural convection in
non-isothermal flow; near the boundaries of the rod bundle – tube board, local
resistance forces and pressure losses additionally arise due to a sharp change
in the porosity of the medium, local inertial forces arise due to a
restructuring of the flow structure due to a change in porosity. This results
in addition of five additional terms in the original nonlinear filtering
equation. Resistance anisotropy is manifested due to a significant difference
in resistance coefficients during the longitudinal, radial and axial flow of
the tube bundle. Dimensionless complexes, effective Reynolds, Euler numbers,
Archimedes number, dimensionless temperature, other similarity numbers used in
the dimensionless form of the equations of fluid dynamics in the porous body
approximation are discussed. The presented method is used to record the general
form of the equations of fluid dynamics in the porous body approximation and is
used in computer programs such as GRIF, and MASKA-LM in the JSC “SSC RF – IPPE”.
1. Mitenkov F.M., Golovko V.F., Ushakov P.A., Yuryev Yu.S.
Proyektirovaniye teploobmennykh apparatov AES. Pod red. F.M. Mitenkova
[Design of NPP heat exchangers. Ed. F.M. Mitenkovai]. Moscow,
Energoatomizdat Publ., 1988. 296 p.
2. Subbotin V.I., Kashcheev V.M., Nomofilov E.V., Yuriev
Yu. S. Resheniye zadach reaktornoy teplofiziki na EVM [Solving the
problems of reactor thermophysics on computers]. Moscow, Atomizdat Publ.,
1979.
3. Khristianovich S.A. Dvizheniye gruntovykh vod, ne sleduyushcheye
zakonu Darsi [Groundwater movement, not following Darcy's law]. PMM –
J. Appl. Math. Mech., 1940, vol. 4, no. 1, pp. 33–52.
4. Kolmakov A.P., Yuryev Yu.S. Primeneniye modeli
poristogo tela dlya rascheta polya skorostey i temperatur v aktivnoy zone [Uses
a porous body model to calculate the velocity and temperature fields in the
core]. Preprint FEI-249 – Preprint IPPE-249. Obninsk, 1971. 12 p.
5. Yuriev Yu.S., Vladimirova L.I., Komyshnaya G.F. Gidrodinamika v
neodnorodnoy poristoy srede. Chast' I. Osobennosti
uravneniya dvizheniya [Hydrodynamics in heterogeneous porous medium. Part I.
Features of the equation of motion]. Preprint FEI-1200 – Preprint
IPPE-1200. Obninsk, FEI, 1981, 19 p.
6. Yuriev Yu.S., Vladimirova L.I., Bobkova V.E. Gidrodinamika v
neodnorodnoy poristoy srede. Chast' II. Osobennosti uravneniya
dvizheniya [Hydrodynamics in heterogeneous porous medium. Part II. Ob usloviyakh
sopryazheniya techeniy zhidkosti na granitse raznorodnykh poristykh tel]. Preprint
FEI-1201 – Preprint IPPE-1201, Obninsk, IPPE Publ., 1981. 25 p.
7. Yuryev Yu.S., Kolmakov A.P. Uravneniya usrednennogo
dvizheniya zhidkosti v poristom tele, sostoyashchem iz puchkov sterzhney
[Equations of average motion of a liquid in a porous body consisting of bundles
of rods]. Preprint FEI-631 – Preprint IPPE-631. Obninsk, 1975.
8. Razvitiye issledovaniy po teorii fil'tratsii v SSSR. Pod red. akad. P.Ya. Kochinoy [Development
of research on the theory of filtration in the USSR. Ed. Acad. P.Ya. Kochinoy].
Moscow, Nauka Publ., 1969. 546 p.
9. Subbotin V.I., Ibragimov M.H., Ushakov P.A., Bobkov
V.P., Zhukov A.V., Yuriev Yu.S. Gidrodinamika i
teploobmen v atomnykh energeticheskikh ustanovkakh
[Hydrodynamics and Heat Exchange in Nuclear Power
Plants]. Moscow, Atomizdat Publ., 1975. 408 p.
10. Lokshin V.A. Gazovoye soprotivleniye naklonnykh puchkov trub [Gas
resistance of inclined pipe bundles]. Izv. VTI, 1941, no. 6, pp. 1–6.
11. Gorchakov M.K., Kolmakov A.P., Yuriev Yu.S. Metodika
teplogidravlicheskogo modelirovaniya aktivnoy zony reaktora [Procedure for
thermal and hydraulic modeling of the reactor core]. Preprint
FEI-597 – Preprint IPPE-597. Obninsk, 1975.
12. Yuriev Yu.S., Komyshnaya G.F. Analiz uravneniy usrednennogo
dvizheniya zhidkosti v mezhtrubnom prostranstve [Analysis of equations of
averaged motion of liquid in the tube bundle space]. Preprint
FEI-929 – Preprint IPPE-929. Obninsk, 1979.
13. Wozniakevich E.V., Nomofilov E.V. K voprosu o fil'tratsii zhidkosti
v anizotropnykh poristykh telakh [About the question of liquid filtration in
anisotropic porous bodies]. Preprint FEI-744 – Preprint
IPPE-744. Obninsk, IPPE Publ., 1977.
14. Ginsburg I.P. Teoriya soprotivleniya i teploperedachi [Theory
of Resistance and Heat Transfer]. Leningrad, LGU Publ., 1970. 375 p.
15. Fedotovsky V.S. Ob uchete sil inertsii pri nestatsionarnoy fil'tratsii
zhidkosti v neodnorodnykh anizotropnykh poristykh sredakh [On taking into
account inertia forces during transient fluid filtration in heterogeneous
anisotropic porous media]. Preprint FEI-1620 – Preprint IPPE.
Obninsk, IPPE Publ., 1984.
16. Shvetsov Yu., Volkov A. GRIF and HYDRON –
3D codes for analysis of thermal and hydraulics parameters of reactors with
1-phase coolant. Proc. 10th Intern. Meeting of IAHR Group on Advanced
Nuclear Reactors Thermal Hydraulics on Thermal Hydraulics for Fast Reactors
with Different Coolants. Obninsk,
2001, pp. 119–137.
17. Kumaev V.Ya., Lebezov A.A., Pyshin I.V., Alekseev V.V. MASKA-LM –
kod dlya rascheta massoperenosa primesey v zhidkometallicheskikh konturakh
[MASKA-LM – code for calculating mass transfer of impurities in liquid metal
circuits]. Trudy Rossiyskoy mezhotraslevoy konferentsii “Teplofizika-2002.
Teplomassoperenos i svoystva zhidkikh metallov” [Proc. of the Russian
Intersectoral Conference “Thermophysics-2002. Heat and Mass Transfer and Liquid
Metals Properties”]. Obninsk, 29–31.10.2002. Obninsk, IPPE, 2002. Vol. 1, pp. 295–298.