Pisarev A.N., Kolesov V.V., Kotov Ya.A., Nevinitsa V.A., Fomichenko P.A.
National Research Center “Kurchatov Institute”, Moscow, Russia
The paper considers the possibility of transferring nuclear data uncertainties obtained by processing the evaluated nuclear data files using the NJOY software package to the nuclear concentrations of the WWER-SKD assembly. One-group constant errors were calculated by the ERROR module using 32 and 33 files of the JEFF-3.3 evaluated nuclear data library. Burnout calculations were carried out using the VisualBurnOut program, which works in conjunction with the MCNP program. The dependence of the uncertainties of nuclear concentrations of a number of actinides on the burn-up time is obtained. As the fuel burns up, the behavior of the root-mean-square deviations of nuclear concentrations of nuclides, due to uncertainties in neutron cross sections, is not always monotonous and depends on many factors. For the main isotopes of uranium, the concentration uncertainties do not exceed 2 %, for the isotopes of plutonium, no more than 3.5 %, while for the main actinides, the values are in the region of 10 %. For heavier actinides, the uncertainty values turn out to be even larger. The results indicate the need to intensify work to improve nuclear data. Using the proposed technique, it is possible to identify those neutron cross sections that, from the point of view of uncertainties, most affect the uncertainties in nuclear concentrations.
1. Kolesov V.V., Novichkov A.V., Voznyakevich E.E., Terekhova A.M. Statistical Approach to Estimated Uncertainty of Nuclear Concentration in Problems of Isotope Kinetics. KnE Engineering, 2017, pp. 261–267. DOI: https://doi.org/10.18502/keg.v3i3.1625.
2. Garcia-Herranz N., Cabellos O., Sanz J., Juan J., Kuijper J.C. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations. Annals of Nuclear Energy, 2008, vol. 35, no. 4, pp. 714–730. DOI: https://doi.org/10.1016/j.anucene.2007.07.022.
3. Takeda T., Hirokawa N., Noda T. Estimation of Error Propagation in Monte-Carlo Burnup Calculations. Nuclear Science and Technology, 1999, vol. 36, no. 9, pp. 738–745. DOI: https://doi.org/10.1080/18811248.1999.9726262.
4. Tohjoh M., Endo T., Watanabe M., Yamamoto A. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations. Annals of Nuclear Energy, 2006, vol. 33, no. 17–18, pp. 1424–1436. DOI: https://doi.org/10.1016/j.anucene.2006.09.010.
5. Park H.J., Shim H.J., Kim C.H. Uncertainty Propagation in Monte Carlo Depletion Analysis. Nuclear Science and Engineering, 2011, vol. 167, no. 3, pp. 196–208. DOI: https://doi.org/10.13182/NSE09-106.
6. Quentin Newell, Charlotta Sanders. Stochastic Uncertainty Propagation in Monte Carlo Depletion Calculations. Nuclear Science and Engineering, 2015, vol. 179, no. 3, pp. 253–263. DOI: https://doi.org/10.13182/NSE13-44.
7. Ebiwonjumi B., Kong C., Zhang P., Cherezov A., Lee D. Uncertainty quantification of PWR spent fuel due to nuclear data and modelling parameters. Nucl. Eng. Tech., 2021, vol. 53, no. 3, pp. 715–731. DOI: https://doi.org/10.1016/j.net.2020.07.012.
8. Ebiwonjumi B., Choi S., Lemaire M., Lee D., Shin H.C. Validation of lattice physics code STREAM for predicting pressurized water reactor spent nuclear fuel isotopic inventory. Ann. Nucl. Energy, 2018, vol. 120, pp. 431–449. DOI: https://doi.org/10.1016/j.anucene.2018.06.002.
9. Da Cruz D.F., Rochman D., Koning A.J. Uncertainty Analysis on Reactivity and Discharged Inventory due to 235,238U, 239,240,241Pu, and Fission Products: Application to a Pressurized Water Reactor Fuel Assembly. Nuclear Technology, 2014, vol. 185, no. 2, pp. 174–191. DOI: https://doi.org/10.13182/NT12-154.
10. Rochman D.A., Vasiliev A., Dokhane A., Ferroukhi H. Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data. EPJ Nucl. Sci. Technol., 2018, vol. 4, article 6. DOI: https://doi.org/10.1051/epjn/2018005.
11. Aliberti G. et al. Nuclear Data Sensitivity, Uncertainty and Target Accuracy Assessment for Future Nuclear Systems. Annals of Nuclear Energy, 2006, vol. 33, no. 8, pp. 700–733. DOI: https://doi.org/10.1016/j.anucene.2006.02.003.
12. Rochman D., Koning A.J., Da Cruz D.F. Propagation of 235,236,238U and 239Pu nuclear data uncertainties for a typical PWR fuel element. Nuclear Technology, 2012, vol. 179, no. 3, pp. 323–338. DOI: https://doi.org/10.13182/NT11-61.
13. Rochman D., Zwermann W., van der Marck S.C., Koning A.J., Sjöstrand H., Helgesson P., Krzykacz-Hausmann B. Efficient Use of Monte Carlo: Uncertainty Propagation. Nuclear Science and Engineering, 2014, vol. 177, no. 3, pp. 337–349. DOI: https://doi.org/10.13182/NSE13-32.
14. Rochman D., Koning A.J., Da Cruz D.F., van der Marck S.C. Nuclear Data Uncertainty Propagation for a Sodium Fast Reactor. Journal of the Korean Physical Society, 2011, vol. 59, no. 4, pp. 1191–1194. DOI: https://doi.org/10.3938/jkps.59.1191.
15. Rochman D. & Koning A.J. How to Randomly Evaluate Nuclear Data: A New Data Adjustment Method Applied to 239Pu. Nuclear Science and Engineering, 2011, vol. 169, no. 1, pp. 68–80. DOI: 10.13182/NSE10-66.
16. Rochman D., Koning A.J., van der Marck S.C., Hogenbirk A., Sciolla C.M. Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo. Annals of Nuclear Energy, 2011, vol. 38, no. 5, pp. 942–952. DOI: https:doi.org/10.1016/j.anucene.2011.01.026.
17. Rochman D., Koning A.J., van der Marck S.C., Hogenbirk A., van Veen D. Nuclear Data Uncertainty Propagation: Total Monte Carlo vs. Covariances. Journal of the Korean Physical Society, 2011, vol. 59, no. 59, pp. 1236–1241. DOI: https://doi.org/10.3938/jkps.59.1236.
18. Peregudov A.A., Andrianova O.N., Manturov G.N., Raskach K.F., Semenov M.Yu., Tsiboulya A.M. GRS method to evaluate uncertainties in calculation parameters of an advanced fast reactor. Izvestiya vuzov. Yadernaya Energetika, 2014, vol. 2, pp. 90–98. DOI: https://doi.org/10.26583/npe.2014.2.10.
19. Kolesov V.V., Khitrik D.V., Kamaev D.A. VisualBurnOut program. Registration No. 2009617021 dated 23.12.2009.