Sorokin A.P., Alekseev V.V., Ivanov A.P., Kuzina Yu.A.
A.I. Leypunsky Institute of Physics and Power Engineering, Obninsk, Russia
The results of exploratory computational and experimental studies aimed at shaping the appearance, design and technological solutions of a high-temperature reactor facility with a sodium-cooled fast neutron reactor for the production of electricity with high efficiency (40–50 %), hydrogen and other innovative applications are presented. An integral layout of the main equipment of the primary circuit in the reactor tank with the main and safety vessels is proposed, which contributes to the achievement of a high level of safety and makes it possible to exclude the boxes of auxiliary systems of the primary circuit. The scheme of the reactor plant provides the possibility of both the production of electricity and hydrogen based on the use of solid oxide water electrolysis technology, as well as the implementation of important technological processes in the gasification and liquefaction of coal, advanced oil refining, the conversion of biomass into liquid fuel, in the chemical industry, metallurgy and etc. The temperature of the sodium coolant at the outlet of the core in these reactors reaches 900–950°C. The performed conceptual studies on the choice of the appearance of a high-temperature fast sodium reactor in compliance with safety requirements have shown that the creation of such a reactor is a complex, but real technical problem. The relative small size, the type of coolant, the choice of fissile material and structural materials make it possible to create a reactor with its inherent properties. The fundamental problems are the creation of a sodium coolant technology at high temperatures and hydrogen concentrations for long-term resources, as well as the use of heat-resistant radiation-resistant high-temperature structural materials, ensuring their corrosion resistance when the oxygen content in the sodium coolant is at the level of 0.1 PPM.
1. Morozov A.V., Sorokin A.P. Sposoby polucheniya vodoroda i perspektivy ispol'zovaniya vysokotemperaturnogo bystrogo natriyevogo reaktora dlya yego proizvodstva [Methods for producing hydrogen and prospects for using a high-temperature fast sodium reactor for its production]. Trudy 21-y konferentsiyi po strukturnoy mekhanike v reaktornoy tekhnologii (SMIRT-21). Doklad na seminare po vysokotemperaturnym proyektam [Proc. of the 21st Conference on Structural Mechanics in Reactor Technology (SMIRT-21), Report at a seminar on high-temperature projects], Kalpakkam, India, November 14–15 2011.
2. International Atomic Energy Agency. Hydrogen as an Energy Carrier and its Production by Nuclear Power. IAEA–TECDOC–1085, IAEA, Vienna, 1999.
3. Innovation in Nuclear Energy Technology. NEA, N. 6103, OECD Nuclear Energy Agency, 2007.
4. Albitskaya E.S. Razvitiye yaderno-energeticheskikh sistem [Development of nuclear power systems]. Atomnaya tekhnika za rubezhom – Atomic Technology Abroad, 2013, no. 11, pp. 3–16.
5. Degtyarev A.M., Kolyaskin O.E., Myasnikov A.A. Molten-salt subcritical transplutonium actinide incinerator. Atomic Energy, 2013, vol. 114, issue 4, pp. 225–232. Available at: https://link.springer.com/article/10.1007/s10512-013-9701-3 (accessed 06.10.2022).
6. Goverdovsky A.A., Ovcharenko M.K., Belinsky V.S. Elektroyadernyy podkriticheskiy blanket na modul'nom printsipe postroyeniya aktivnoy zony s zhidkometallicheskimi rasplavami delyashchikhsya ftoridov urana (UF4) i plutoniya (PUF3) vo ftoridnom rastvore FLINAK [Electronuclear subcritical blanket based on the modular principle of constructing a core with liquid-metal melts of fissile uranium (UF4) and plutonium (PUF3) fluorides in a FLINAK fluoride solution]. Trudy konferentsii “Teplofizika reaktorov na bystrykh neytronakh (Teplofizika-2013)” [Collection of reports of the conference “Thermophysics of fast neutron reactors (Thermophysics-2013)”]. Obninsk, October 30 – November 1, 2013. Obninsk, IPPE Publ., 2013, vol. 1, pp. 9–22.
7. Poplavsky V.M., Zabudko A.N., Petrov E.E. et al. Physical characteristics and problems of developing a sodium-cooled fast reactor as a source of high-potential thermal energy for hydrogen production and other high-temperature technologies. Atomic Energy, 2009, vol. 106, no. 3, pp. 162–167. Available at: https://link.springer.com/article/10.1007/s10512-009-9147-9 (accessed 06.10.2022).
8. Sorokin A.P., Kozlov F.A. Sostoyaniye i zadachi issledovaniy po tekhnologii vysokotemperaturnogo natriyevogo teplonositelya [Status and tasks of research on high-temperature sodium coolant technology]. Trudy 21-y konferentsiyi po strukturnoy mekhanike v reaktornoy tekhnologii (SMIRT-21). Doklad na seminare po vysokotemperaturnym proyektam [Proc. of the 21st Conference on Structural Mechanics in Reactor Technology (SMIRT-21), Report at a seminar on high-temperature projects], Kalpakkam, India, November 14–15, 2011.
9. Sorokin A.P., Trufanov A.A., Ivanov A.P., Kozlov F.A., Kamaev A.A., Alekseev V.V., Morozov A.V. Investigations in a substantiation of high-temperature nuclear energy technology with fast-neutron reactor cooled by sodium for manufacture of hydrogen and other innovative applications. Proc. of the International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17). Yekaterinburg, Russian Federation. 26–29 June 2017, paper 436.
10. Sorokin A.P., Gulevich A.V., Kamaev A.A., Kuzina Yu.A., Ivanov A.P., Alekseev V.V., Morozov A.V. Issledovaniya v obosnovaniye vysokotemperaturnoy yadernoy energotekhnologii s reaktorom na bystrykh neytronakh s natriyevym teplonositelem dlya proizvodstva vodoroda i drugikh innovatsionnykh primeneniy [Research to substantiate high-temperature nuclear power technology with a sodium-cooled fast neutron reactor for hydrogen production and other innovative applications]. Trudy 11-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Bezopasnost', effektivnost' i ekonomika atomnoy energe-tiki” (MNTK-2018) [Proc. of the 11th International Scientific and Technical Conference “Safety, Efficiency and Economics of Nuclear Energy” (MNTK-2018)], Moscow, Rosenergoatom Concern, May 23–24, 2018, 10 p.
11. Kazansky Yu.A., Troyanov M.F., Matveev V.I. et al. Investigation of the physical characteristics of the BN-600 reactor. Atomic Energy, 1983, vol. 55, issue 1, pp. 441–447. Available at: https://link.springer.com/article/10.1007/BF01126679 (accessed 06.10.2022).
12. Matveev V.I., Khomyakov Yu.S. Tekhnicheskaya fizika bystrykh reaktorov s natriyevym teplonositelem. Uchebnoye posobiye dlya VUZov. Pod redaktsiyey chl.-korr. RAN V.I. Rachkova [Technical Physics of Fast Reactors with Sodium Coolant. Textbook for Universities. Ed. Corr. RAS V.I. Rachkov]. M.: Izdatel'skiy dom MEI Publ., 2012. pp. 38–42.
13. Bekkerev I.V. Metally i splavy: marki i khimicheskiy sostav [Metals and alloys: grades and chemical composition]. Ulyanovsk, UlGTU Publ., 2007. Available at: http://www.bibliotekar.ru/spravochnik-73/index.htm (accessed 06.10.2022).
14. Levich V.G. Fiziko-khimicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow GIFML Publ., 1959. 700 p.
15. Kozlov F.A., Sorokin A.P., Alekseev V.V. et al. The High-Temperature Sodium Coolant Technology in Nuclear Power Installations for Hydrogen Power Engineering. Thermal Engineering, 2014, vol. 61, no. 5, pp. 348–356.
16. Kozlov F.A., Konovalov M.A., Sorokin A.P., Alekseev V.V. Osobennosti massoperenosa tritiya v vysokotemperaturnoy YAEU s natriyevym teplonositelem dlya proizvodstva vodoroda [Features of tritium mass transfer in a high-temperature nuclear power plant with a sodium coolant for hydrogen production] Trudy konferentsii “Teplofizika reaktorov na bystrykh neytronakh (Teplofizika-2013)” [Proc. of the of reports of the conference “Thermophysics of fast neutron reactors (Teplophysics-2013)”]. Obninsk, October 30 – November 1, 2013. Obninsk, IPPE Publ., 2014, vol. 2, pp. 558–566.
17. Belovodsky L.F., Gaevoy V.K., Grishmanovsky V.I. Tritiy [Tritium]. Moscow, Energoatomizdat Publ., 1985. 248 p.
18. Nevzorov B.A., Zotov V.V., Ivanov V.A., Starkov O.V., Kraev N.D., Umnyashkin E.B., Solovyov V.A. Korroziya konstruktsionnykh materialov v zhidkikh shchelochnykh metallakh [Corrosion of structural materials in liquid alkali metals]. Moscow, Atomizdat Publ., 1977. 264 p.
19. Beskorovainy N.M., Ioltukhovskiy A.G. Konstruktsionnyye materialy i zhidkometallicheskiye teplonositeli [Structural materials and liquid metal coolants]. Moscow, Energoatomizdat Publ., 1983. 163 p.
20. Kraev N.D. Korroziya i massoperenos konstruktsionnykh materialov v natriyevom i natriy-kaliyevom teplonositelyakh [Corrosion and mass transfer of structural materials in sodium and sodium-potassium coolants]. Izvestiya vuzov. Yadernaya Energetika, 1999, no. 3, pp. 40–48.
21. Zhang J., Marcille T.F., and Kapernick R. Theoretical Analysis of Corrosion by Liquid Sodium and Sodium-Potassium Alloys. Corrosion, 2008, vol. 64, no. 7, pp. 563–573.