Kolesov V.V.1, Korobeinikov V.V.2, Mikhalev А.V.1, Pupko L.P.2
1 Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University, Obninsk, Russia
2 A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Theoretical studies of the effect of spectral and heterogeneous effects on the efficiency of burning minor actinides in a BN-600 fast neutron reactor have been carried out. As part of the research, the following tasks have been solved:
– Calculations of the active zones of fast reactors with fuel U-238+AM-241 and TH-232+AM-241 for burning Am-241 were carried out.
– The spectral effects impact on the different variants of Am-241 burning in a BN-600 reactor is estimated.
– The heterogeneity effects during the Am-241 burning in a fast neutron reactor with uranium-thorium fuel are calculated.
– Modeling of the minor actinides burning with different methods of their placement in a BN-600 type reactor showed the most effective ways of minor actinides disposal.
– The efficiency of Am-241 burning in a fast-heat reactor system based on a BN-600 reactor type has been investigated.
– The conducted research results will help to choose effective approaches for the burning of minor actinides.
1. Boris Bergelson, Alexander Gerasimov, Tamara Zaritskaya, Gennady Kiselev, Alexander Volovik Decay Heat Power and Radiotoxicity of Spent Uranium, Plutonium and Thorium Fuel at Long-Term Storage. Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology SMiRT18. Beijing, 2005, pp. 4745–4751.
2. Salvatores M., Slessarev I., and Uematsu M. A Global Physics Approach to Transmutation of Radioactive Nuclei. Nuclear Science and Engineering, 1994, vol. 116, p. 18.
3. Japan Atomic Energy Agency – Nuclear Data Center. Japanese standard library for fast breeder reactors, thermal reactors, fusion neutronics and shielding calculations, and other applications (JENDL-4.0). JAEA-NDC, 2010. Доступно на: URL: https://wwwndc.jaea.go.jp/jendl/j40/j40.html (дата обращения 12.09.2022).
4. OECD NEA. French R&D on the Partitioning and Transmutation of Long-lived Radionuclides: An International Peer Review of the 2005 CEA Report. Papers: OECD Publishing, 2006.
5. Oak Ridge National Laboratory. Preliminary Multicycle Transuranic Actinide Partitioning-Transmutation Studies. 2007. ORNL/TM-2007/24.
6. Naoyuki Takaki. Neutronic potential of water cooled reactor with actinide closed fuel cycle. Progress in Nuclear Energy, 2000, vol. 37, pp. 1–4.
7. Kloosterman J.L. Multiple Recycling of Plutonium in Advanced PWRs. Netherlands Energy Research Foundation (ECN), 1998. Доступно на: http://www.janleenkloosterman.nl/papers/klooster9803.pdf (дата обращения 20.01.2023).
8. Youinou G. Plutonium Multirecycling in Standard PWRs Loaded with Evolutionary Fuels. Nuclear Science and Engineering. ANS, 2005, vol. 151, issue 1, pp. 25–45.
9. Atomic Energy of Canada Limited (AECL). Scenarios for the Transmutation of Actinides in Candu Reactors: Company Wide. Ontario: AECL, 2010. CW-123700-CONF-010.
10. Kostadin Zashev. Transmutation of VVER-1000 Spent Nuclear Fuel in Candu Reactors. Proc. of the Energy Forum'2017. Varna, 2017. 5 p.
11. Prunier C., Boussard F., Koch L., Coquerelle M. Some Specific Aspects of Homogeneous Americium- and Neptunium-Based Fuels Transmutation through the Outcomes of the SUPERFACT Experiment in Phenix Fast Reactor. Nuclear Technology, 1997, vol. 119, pp. 141–147. JRC15648.
12. Guillaumont R. The Bataille's law: scientific research for nuclear wastes in France. L'Actualité chimique, 2005, vol. 285–286, pp. 8–12.
13. Jean-Marc Bonnerot et al. First Results of the Irradiation Program of Inert Matrices, Targets and Fuels for Minor Actinides Transmutation in Fast Reactor. Montpellier. 2008. Доступно на: https://inis.iaea.org/ collection/NCLCollectionStore/_Public/40/003/40003966.pdf (дата обращения 20.01.2023).
14. Chichester J.M. et al. Overview of the FUTURIX-FTA Irradiation Experiment in the Phénix Reactor. Proc. of Global 2015. Paris, France, September 20–24, 2015, p. 5268. Доступно на: https://inldigitallibrary.inl.gov/sites/sti/sti/7146507.pdf (дата обращения 20.01.2023).
15. Idaho National Laboratory. Postirradiation Examination of FUTURIX-FTA metallic alloy experiments. Idaho: INL, 2019. INL/JOU-18-52239-Revision-0.
16. The EBR-II X501 Minor Actinide Burning Experiment. Idaho: INL, 2008. INL/CON-08-13828 Preprint.
17. Tomonori SOGA, Takashi SEKINE, Kosuke TANAKA, Ryoichi KITAMURA, Takafumi AOYAMA. Irradiation Test of Fuel Containing Minor Actinides in the Experimental Fast Reactor Joyo. Journal of Power and Energy Systems, 2008, vol. 2, issue 2, pp. 692–702.
18. International Atomic Energy Agency (IAEA). Status of Minor Actinide Fuel Development. Vienna: IAEA, 2009. no.&bnbsp;NF-T-4.6.
19. International Atomic Energy Agency (IAEA). Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel. Vienna: IAEA, 2009. IAEA-TECDOC-1626.
20. GulevichA.V.,EliseevV.A.,KlinovD.A.,KorobeynikovaL.V.,KryachkoM.V., PershukovV.A., TroyanovV.M. The possibility of burning americium in fast reactors. Atomic energy, 2020, vol. 128, pp. 82–87.
21. Kosyakin D.A., Korobeynikov V.V., Stogov V.Yu. Issledovaniye zavisimosti effektivnosti transmutatsii Am-241 ot energeticheskoy struktury plotnosti neytronnogo potoka [Investigation of the dependence of the Am-241 transmutation efficiency on the energy structure of the neutron flux density]. Preprint FEI-3294 – Preprint IPPE-3294. Obninsk, IPPE Publ., 2021. 32 p.
22. Korobeynikov V.V., Kolesov V.V., Ignatiev I.A. Raschotnoye modelirovaniye vyzhiganiya minornykh aktinidov v reaktore na bystrykh neytronakh s toplivom bez urana i plutoniya [Computational modeling of minor actinide burning in a fast neutron reactor with fuel without uranium and plutonium]. Preprint FEI-3299 – Preprint IPPE-3299. Obninsk, IPPE Publ., 2022. 38 p.
23. Korobeynikov V.V., Kolesov V.V., Karazhelevskaya Yu.E., Terekhova A.M. Investigation of the possibility of burning minor actinides in a fast reactor with metallic fuel based only on minor actinides. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, no.&bnbsp;1, pp. 59–68.
24. Moseev A.L., Dekusar V.M., Korobeynikov V.V., Eliseev V.A. Studies of the potential of a two-component nuclear power system in different conditions of its development. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, no.&bnbsp;2, pp.189–205.
25. Korobeynikov V.V., Kolesov V.V., Karazhelevskaya Yu.E., Terekhova A.M. Studies of the possibility of burning and transmutation of Am-241 in a reactor with Americium fuel. Izvestiya vuzov. Yadernaya energetika. 2019. issue 2, pp. 153–163.
26. Dekusar V.M., Zrodnikov A.V., Eliseev V.A., Moseev A.L. On the issue of accumulation and reactor utilization of americium in nuclear power. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, no.&bnbsp;1, pp. 215–222.
27. BN-600 MOX core benchmark analysis results from phases 4 and 6 of a coordinated research project on updated codes and methods to reduce the calculational uncertainties of the LMFR reactivity effects. IAEA-TECDOC-1700. International atomic energy agency. Vienna, 2013.
28. Alekseev P., Vasiliev А., Mikityuk К., Subbotin S., Fomichenko P., Schepetina Т. “Lead-bismuth reactor RBEC: optimization of conceptual decisions”. Preprint IAE-6229/4. 2001.