Ananich R.O., Bazyuk S.S., Bespechalov B.N., Kiselev D.S., Polunin K.K., Stoykov K.V., Urusov A.A., Yagnyatinskiy D.A.
The results of experimental investigation devoted to oxidation kinetics of fuel rod claddings made of E110 zirconium alloy coated with chromium and 42KhNM chromium-nickel alloy under superheated water steam in the temperature range of 800–1300 °C and exposure times up to 8 hours are presented. It has been established that fivefold thermal cyclic loading of E110-Cr samples of WWER-1000 fuel rod claddings in water vapor at 1200 °C and a total exposure time of more than 500 seconds does not lead to loss of adhesion and cracking of the chromium coating at the stages of heating and cooldown at a rate of up to 27 K/s. Based on the analysis of experimental data, it is shown that the use of chromium reduces the intensity of degradation of the WWER-1000 fuel rod cladding by reducing the thickness of the ZrO2 layer formed as a result of the zirconium steam reaction by 2.3 times. fuel rods from intense steam-zirconium reaction during an accident with loss of coolant. The experimental data of generated oxide layers thicknesses are confirmed by post-test material science studies. Based on thermogravimetric tests the temperature-time evaluation of protective coating performance is obtained applied to E110 rod cladding.
1. Khatib-Rahbar M., Krall A., Yuan Z., Zavisca M. Review of Accident Tolerant Fuel Concepts with Implications to Severe Accident Progression and Radiological Releases. NUREG/CR-7282. 2021. Доступно на: https://www.nrc.gov/docs/ML2121/ML21210A321.pdf (дата обращения 23.08.2023).
2. Larikov L.N., Yurchenko Yu.F. Teplovie svoystva metallov i splavov. Spravochnik. [Thermal properties of metals and alloys. Handbook]. Kiyv, Naukova dumka Publ., 1985. 437 p.
3. Voytivich R.F., Golovko E.I. Visokotemperaturnoe okislenie metallov i splavov. Spravochnik. [High-temperature oxidation of metals and alloys. Handbook]. Kiyv, Naukova dumka Publ., 1980. 296 p.
4. Kratkiy fiziko-technicheskiy spravochnik. Tom 1. Pod red. K.P. Yakovleva. [Brief physical and technical handbook. Ed. by K.P. Yakovlev. Vol. 1]. Moscow, Fizmatlit Publ., 1960. 411 p.
5. Kulakov G.V., Ershov S.A., Konovalov Yu.V. Osnovnie svoystva splava 42ХНМ i perspektivy ego vnedreniya v kachestve konstructsionnogo materiala elementov reaktorov VVER. [General properties of 42KhNM alloy and the prospects of its implementation as structural material for WWER reactors elements]. Proc. of ХI Conf. on reactor material sciences Dimitrovgrad, RIAR, May 27–31, 2019, pp. 37–39.
6. Safonov D.V. Structurno-fazovoe sostoyanie obolochechnyh materialov v usloviyah ekspluatatsii, sukhogo khraneniya, a takzhe proektnoi avarii [Phase-structural state of cladding materials under exploitation, dry storage and design accident conditions. Cand. tech. sci. diss.]. Moscow, 2021.
7. Bazyuk S.S., Bespechalov B.N., Kiselev D.S., Kuzma-Kichta Yu.A., Parshin N.Ya., Polunin K.K.,
Popov E.B., Soldatkin D.M., Urusov A.A. Kharakteristiki vysokotemperaturnogo okisleniya i
teplogidravliki tolerantnykh tvelov v usloviyakh LOCA [Characteristics of high-temperature oxidation and thermal-hydraulic behavior of accident tolerant fuel rods under LOCA conditions]. Tekhnologii obespecheniya zhiznennogo tsikla YAEU – Nuclear Propulsion Reactor Plants. Life Cycle Management Technologies, 2018, no. 4 (14), pp. 74–89.
8. Ansys Fluent Tutorial Guide. Release 16.0. ANSYS, Inc.Southpointe. October 2014.
9. Kalin B.A., Platonov P.A., Chernov I.I., Shtrombach Ya.I. Fizicheskoe materialovedenie. Tom 1. Chast’ 1. Konstuctsionnye materiali yadernoi techniki [Physical material sciences. Vol.1, Part 1. Structural materials of nuclear technics]. Moscow, MEPHI Publ., 2008. 642 p.
10. Spasskov V.P., Dragunov Yu.G., Ryzhov S.B., Podshibyakin A.K., Volkov G.A. et al. Raschetnoe obosnovanie teplogidravlicheskih kharakteristik reactora i RU VVER [Numerical justification of reactor and RU WWER thermal hydraulics features]. Moscow, Akademkniga Publ., 2004. 340 p.
11. Lyakisheva N.P. Diagrammi sostoyaniya dvoynikh metallicheskikh sistem [Phase diagrams of binary metallic systems.]. Moscow, Mashinostroenie Publ., 1996. 1238 p.
12. Baker L., Just L.C. Studies of Metal Water Reactions at High Temperatures. III. Experimental and Theoretical Studies of the Zirconium-Water Reaction. ANL-6548, page 7, May 1962.
13. Bohmert J., Dietrich M., Linek J. Comparative Studies on High-Temperature Corrosion of Zr-1%N1 and Zircaloy-4. Nuclear Engineering and Design, 1993, vol. 147, no. 1, pp. 53–62
14. Gyori Cs. et al. Extension of Transuranus code applicability with niobium containing model; (EXTRA). Proc. of FISA-2003 Conference EU Research in Reactor Safety. Luxembourg, November 2003.
15. Bibilashvili Yu.K., Sokolov N.B., Salatov A.V., Andreyeva-Andriyevskaya L.N., Nechayeva O.A., Vlasov F.Yu. RAPTA-5 code: modelling behaviour of WER-type fuel rods in design basis accidents verification calculations. Proc. of IAEA Technical Committee Meeting on “Behaviour oj LWR Core Materials under Accident Conditions”. Dimitrovgrad, Russia, on 9–13 October 1995. IAEA- TECDOC-921, Vienna, 1996, pp. 139–152.
16. Vrtilkova V. et al. An Approach to the Alternative LOCA Embrittlement Criterion. Proc. of SEGFSM Topical Meeting on LOCA Fuel Issues. Argonne National Laboratory, May 2004. NEA/CSNI/R(2004) 19.
17. Egorova L.Y., Lioutov K., Smirnov V. Major Findings of E110 Studies under LOCA Conditions. SEGFSM Topical Meeting on LOCA Issues. Argonne National Laboratory, May 25–27, 2004.
18. Urusov A.A., Mokrushin A.A., Soldatkin D.M., Polunin K.K. Issledovanie shtatnikh obolochek tvelov reactora tipa VVER s zaschitnym pokritiem v usloviyakh, kharakternikh dlya avarii s poterei teplonositelya [The investigation of regular rod claddings of WWER type reactor with protective coating under characteristic conditions of LOCA accident.]. Tezisy 11-y konf. po reaktornomu. Materialovedeniyu [Proc. of 11th Conf. on Reactor Material Sciences]. Dimitrovgrad, 27–31 May 2019. Available at: http://www.niiar.ru/sites/default/files/safety20/programma_rm_2019_itog_0.pdf (accessed 23.08.2023).
19. Chalupová L.A., Steinbrück M., Grosse M., Krejčí J., Ševeček M. High-temperature oxidation of chrome-nickel alloy. Acta Polytechnica CTU Proceedings. 28:8–14, 2020. DOI:10.14311/APP.2020.28.0008.
20. Berthod P. Kinetics of High Temperature Oxidation and Chromia Volatilization for a Binary Ni–Cr Alloy. Oxidation of Metals, 2005, vol. 64, no. 3/4. DOI: 10.1007/s11085-005-6562-8.