Shaginyan R.A., Korobeinikova L.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Most of the isotopes in demand are often activated by thermal neutrons. This fact determines the practice of developing target isotopes in thermal reactors. The irradiation time to achieve the parameters required is several years. At the same time, obtaining the same indicators in fast reactors turns out to be faster due to the neutron flux density exceeding by 2 orders of magnitude.
To carry out the effective production of isotopes (produced in the thermal spectrum) in fast reactors, it is necessary to use specialized irradiation devices (ID) with a moderating material. In addition, the operating time in a fast reactor may not be limited to several irradiating devices, but have a large-scale character (several dozen irradiating devices). Large-scale operating time with the replacement of a number of breeding blanket with irradiation devices definitely leads to unevenness, both azimuthal due to the distance from the center of the core, and axial due to the peculiarities of the distribution of the neutron flux embedded in the core design.
According to the results of calculations of unevenness (deviation of activity from the average), the difference between the maximum and the minimum in terms of the location of the irradiation device in the core is 1.9, according to the azimuth distribution inside the device 1.51, according to the altitude distribution 1.16. If we consider the altitude partition in a more detailed approximation, then the ratio of maximum to minimum will be 1.32.
To compensate for the irregularities, there are a number of measures that contribute to their reduction: rotation of the irradiation device around its axis, an increase of the irradiation duration, rearrangement of under-irradiated ID with over-irradiated ones.
1. Vasil'ev B.A., Farakshin M.R., Belov S.B., Kuznetsov A.E. Perspektivy razvitiya aktivnoy zony reaktora BN-800 [Prospects for the development of the core of the BN-800 reactor]. Sb. 10 mezhdunarodnoy nauchno-tekhnicheskoy konferentsii MNTK 2016 [Proc. of the 10th international scientific and technical conference MNTK]. Moscow, 2016, pp. 34–36.
2. Bagdasarov Yu.E., Poplavskiy V.M., Matveyev V.I. et al. Intrinsic safety of future BN-800 based nuclear technology. Atomic Energy, 2001, vol. 90, no. 6, pp. 455–459. DOI 10.1023/A:1012307625054.
3. Zvonarev A.V., Korobeynikov V.V. et al. Cobalt-60 production in the BN-350 fast power reactor. Atomic Energy, 1994, vol. 77, no. 6, pp. 454–457.
4. Mal'tsev V.V., Karpenko A.I., Chernov I.A., Golovin V.V. Opyt narabotki 60Co v BN-600 [Experience in the production of 60Co in BN-600]. Atomnaya energiya – Atomic Energy, 1999, vol. 86, no. 3, pp. 216–219.
5. Evdokimov V.P. et al. Vozmozhnosti energeticheskikh bystrykh reaktorov dlya polucheniya moshchnykh radioaktivnykh istochnikov [The possibilities of fast power reactors to create high intensity radioactive sources]. Proc. of the PHYSOR 2002. Seoul. Korea, October 7–10, 2002.
6. Golubev V.I., Dolgov E.V., Efremov A.I., Zvonarev A.V., Korobeynikov V.V. et al. Raschetno-eksperimental'nye issledovaniya v obosnovanie obluchatel'nykh ustroystv dlya narabotki kobal'ta-60 [Calculated pilot studies in justification of irradiating devices for a cobalt-60 operating time]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 1991, no. 4, pp. 56–70.
7. Varivtsev A.V., Zhemkov I.Yu., Romanov E.G., Tikhonchev M.Yu., Toporov Yu.G. Fizicheskaya optimizatsiya obluchatel'nogo ustroystva dlya nakopleniya kobal'ta-60 vysokoy udel'noy aktivnosti v reaktore BN-600 [Physical optimization of the irradiating device for accumulation of a cobalt-60 of a high specific activity in the BN-600 reactor]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk – News of the Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, no. 6, pp. 112–118.
8. X-5 Monte Carlo Team. MCNP – A General Monte Carlo N-Practical Transport Code. Version 5.
LA-CP-03-0245, 24 April, 2003.
9. Blyskavka A.A., Manturov G.N., Nikolayev M.N., Tsibulya A.M. Programmnyy kompleks CONSYST/MMKK dlya rascheta yadernykh reaktorov metodom Monte-Сarlo v mnogogruppovom priblizhenii s indikatrisami rasseyaniya v Pn-priblizhenii [Software complex CONSYST/MMKK for the calculation of nuclear reactor by the Monte-Carlo method in the multigroup approximation with scattering indicatrices in the Pn approximation]. Preprint FEI-2887 – Preprint IPPE-2887. Obninsk, 2001.
10. Blyskavka A.A., Zhemchugov E.V., Raskach K.F. Pilotnaya versiya programmy MMK s nepreryvnym slezheniyem za energiyey neytrona [Pilot version of the MMK program with continuous monitoring of the neutron energy]. Sb. dokladov mezhvedomstvennogo XXIII seminara “Neitronno-fizicheskie problemi atomnoi energetiki s zamknutim toplivnim tsiklom” (Neitronika-2012) [Proc. of the Interdepartmental Seminar “Neutron-Physical Problems of Nuclear Energy with a Closed Fuel Cycle”], 2013, pp. 311–314.
11. Manturov G.N., Nikolayev M.N., Tsibulya A.M. Programma podgotovki konstant CONSYST. Opisaniye primeneniya. [Constant preparation program CONSYST. Application description]. Preprint FEI-2828 – Preprint IPPE-2828. Obninsk, 2000.
12. Manturov G.N., Nikolaev M.N., Tsibulya A.M. Sistema gruppovykh konstant BNAB-93. Chast' 1. Yadernyye konstanty dlya rascheta neytronnykh i fotonnykh poley izlucheniy [System of group constant BNAB-93. Part 1. Nuclear constant for calculation of neutron and photon readiation fields]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 1996, no. 1, pp. 59.
13. Seregin A.S., Kislitsyna T.S. Annotatsiya kompleksa TRIGEX-CONSYST-BNAB-90 [Abstract of the TRIGEX-CONSYST-BNAB-90]. Preprint FEI-2655 – Preprint IPPE-2655. Obninsk, 1997.