EDN: DPMMEU
Authors & Affiliations
Kovalev N.V.1 , Prokoshin A.M.1 , Kudinov A.S.1 , Nevinitsa V.A.2
1 Khlopin Radium Institute, St. Petersburg, Russia
2 National Research Centre “Kurchatov Institute”, Moscow, Russia
Kovalev N.V. – Researcher. Contacts: 28, 2nd Murinsky pr-t, St. Petersburg, Russia, 194021. Tel.: +7 (812) 346-90-29; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Prokoshin A.M. – Lead Engineer.
Kudinov A.S. – Department Director, Cand. Sci. (Tech.).
Nevinitsa V.A. – Department Director, Cand. Sci. (Tech.).
Abstract
Correct assessment of the spent fuel nuclide composition is very important in the field of the final stage of the nuclear fuel cycle. However, nuclear physics modeling of a reactor full core is a rather complex and time-consuming task. The purpose of the study is to research how the results of the calculated nuclide composition of the unloaded spent fuel of a VVER 1000 reactor, operated in an 18-month fuel cycle, differ when using a core model from a simple model of an infinite fuel assembly. The simulation was carried out using the Serpent 2 software that implements the Monte-Carlo method. As a result of the verification, the created full core model showed good agreement with the reference values for the main neutron-physical characteristics. It was determined that the average burnup of unloaded fuel assemblies is 50.74 MW·day/kgHM. The nuclide composition of the unloaded SNF was obtained. The article presents the elemental composition of spent fuel, as well as the isotopes that make the main contribution to the dose rate from alpha-, beta- and gamma-radiation. In order to increase the speed of such calculations, a model of an infinite fuel assembly has been developed. The effective enrichment was selected in accordance with the results obtained from the core model. Comparison of the composition of unloaded spent fuel using an infinite fuel assembly model showed good agreement with the composition obtained using a full core model. We can recommend using a simplified version of calculating the nuclide composition based on the model of an infinite fuel assembly.
Keywords
nuclear physics modeling, Monte-Carlo method, Serpent, nuclide composition calculation, spent nuclear fuel (SNF), verification, infinite fuel assembly model, core model
Article Text (PDF, in Russian)
References
- Normy i pravila. Sbor, pererabotka, khraneniye i konditsionirovaniye zhidkikh radioaktivnykh otkhodov. Trebovaniya bezopasnosti: NP-019-2015: utv. prikazom Federal'noy sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 25.06.2015 № 242. NP-019-2015 [Collection, processing, storage and conditioning of liquid radioactive waste. Safety requirements]. Gosatomnadzor Rossii Publ., 2015, 21 p.
- Aloy A.S., Blokhin A.I., Blokhin P.A., Kovalev N.V. Radiatsionnyye kharakteristiki borosilikatnogo stekla, soderzhashchego vysokoaktivnyye otkhody [Radiation Characteristics of Borosilicate Glass Containing High-Level Waste]. Radioaktivnyye otkhody – Radioactive Waste, 2020, no. 3 (12), pp. 93–100. DOI: 10.25283/2587-9707-2020-3-93-100.
- Fedorov Y.S., Bibichev B.A., Zil'berman B.Y., Kudryavtsev E.G. Use of Recovered Uranium and Plutonium in Thermal Reactors. At Energy, 2005, no. 99, issue 2, pp. 572–576. DOI: https://doi.org/10.1007/s10512-005-0248-9.
- Kovalev N.V., Zilberman B.Ya., Goletskiy N.D., Sinyukhin A.B. Novyy podkhod k povtornomu is-pol'zovaniyu otrabotavshego yadernogo topliva teplovykh reaktorov v ramkakh kontseptsii REMIKS [A new approach to spent nuclear fuel recycling for light water reactors in the frame of remix concept]. Izvestiya vuzov. Yadernaya Energetika, 2020, no. 1, pp. 67–77. DOI: https://doi.org/10.26583/npe.2020.1.077.
- Kovalev N.V., Prokoshin A.M., Kudinov A.S., Nevinitsa V.A. Ispol'zovaniye plutoniya iz otrabotavshego smeshannogo topliva REMIKS v reaktore BN-1200 [Use of REMIX Spent Mixed Fuel Plutonium in the BN-1200 Reactor]. Izvestiya vuzov. Yadernaya Energetika, 2023, no. 1, pp. 70–81. DOI: https://doi.org/10.26583/npe.2023.1.06.
- Kislov A.I., Titov A.A., Dmitriev A.M., Sintsov A.E., Romanov A.V. Radiatsionnyye aspekty ispol'zovaniya regenerirovannogo urana na OAO MSZ pri proizvodstve yadernogo topliva [Radiation aspects of the use of regenerated uranium at JSC MSZ in the production of nuclear fuel]. Yadernaya i radiatsionnaya bezopasnost' – Nuclear and Radiation Safety Journal, 2012, Special Issue, pp. 52–60.
- Postovarova D.V., Kovalev N.V., Onegin M.S., Bibichev B.A. Radiatsionnyye kharakteristiki REMIKS-topliva pri mnogokratnom retsikle v reaktorakh VVER-1000 [Radiation characteristics of REMIX-fuel multirecycling in VVER-1000 reactor]. Izvestiya vuzov. Yadernaya Energetika, 2016, no. 1, pp. 100–110. DOI: https://doi.org/10.26583/npe.2016.1.11.
- Kovalev N.V., Prokoshin A.M., Kudinov A.S., Nevinitsa V.A., Nikandrova M.V., Goletsky N.D. Ispol'zovaniye programmnykh sredstv SCALE, MCNP, SERPENT pri opredelenii nuklidnogo sostava OYAT teplovykh reaktorov [Use of SCALE, MCNP, SERPENT software for determining the nuclide composition of SNF from thermal reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2023, no. 1, pp. 41–52.
- Leppänen J., Pusa M., Viitanen T., Valtavirta V., Kaltiaisenaho T. The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy, 2015, no. 82, pp. 142–150. DOI: https://doi.org/10.1016/j.anucene.2014.08.024
- Leskin S.T., Shelegov A.S., Slobodchuk V.I. Fizicheskiye osobennosti i konstruktsiya reaktora VVER-1000: Uchebnoye posobiye [Physical features and design of the VVER-1000 reactor: Tutorial]. Moscow, NIYAU MIFI Publ., 2011. 116 p.
- Kovalchuk M.V., Sidorenko V.A., Kosourov K.B., Semchenkov Yu.M., Shtrombach Ya.I. Prakticheskiye osnovy razrabotki i obosnovaniya tekhnicheskikh kharakteristik i bezopasnosti ekspluatatsii reaktornykh ustanovok tipa VVER [Practical basis for the development and justification of technical characteristics and operational safety of VVER-type reactor plants]. Moscow, NITS “Kurchatovskiy institute” Publ., 2015. 478 p.
- Skorokhodov D.N., Milto N.V., Kalinushkin A.E., Semchenkov Yu.M., Lipin N.V., Kurchenkov A.Yu. Programma Khortitsa-M. Ustoychivost' resheniya uravneniya vosstanovleniya k vozmushcheniyu vkhodnykh dannykh [Program Hortitsa-M. Stability of Solution of the Reconstruction Equation to Perturbation of Input Data]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, no. 5, pp. 30–42.
- Andrushechko S.A., Afrov A.M., Vasilyev B.Yu., Generalov V.N., Kosourov K.B., Semchenkov Yu.M., Ukraintsev V.F. AES s reaktorom VVER-1000. Ot fizicheskikh osnov ekspluatatsii do evolyutsii proyekta [NPP with VVER-1000 reactor. From the physical foundations of operation to the evolution of the project]. Moscow, Logos Publ., 2010. 604 p.
- Semchenkov Yu.M. Ispol'zovaniye topliva v reaktorakh VVER: sostoyaniye i perspektivy [Use of fuel in VVER reactors: status and prospects]. Rosenergoatom, 2014, no. 14, pp. 8–13.
- Vygovsky S.B., Ryabov N.O., Semenov A.A., Chernov E.V., Bogachek L.N. Fizicheskiye i konstruktsionnyye osobennosti yadernykh energeticheskikh ustanovok s VVER: uchebnoye posobiye [Physical and structural features of nuclear power plants with VVER: training manual]. Moscow, NIYAU MIFI Publ., 2011. 376 p.
UDC 621.039.5
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 1, 1:3