EDN: DPMMEU
Authors & Affiliations
Kovalev N.V.1 ,  Prokoshin A.M.1 , Kudinov A.S.1 , Nevinitsa V.A.2
1 Khlopin Radium Institute, St. Petersburg, Russia
  2 National Research Centre “Kurchatov Institute”, Moscow, Russia 
 
 Kovalev N.V. – Researcher. Contacts: 28, 2nd  Murinsky pr-t, St. Petersburg, Russia, 194021. Tel.: +7 (812) 346-90-29; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.. 
Prokoshin  A.M. – Lead Engineer. 
Kudinov A.S. – Department Director, Cand. Sci. (Tech.). 
 Nevinitsa V.A. – Department Director, Cand. Sci. (Tech.).
Abstract 
 Correct assessment of the  spent fuel nuclide composition is very important in the field of the final  stage of the nuclear fuel cycle. However, nuclear physics modeling of a reactor  full core is a rather complex and time-consuming task. The purpose of the study  is to research how the results of the calculated nuclide composition of the  unloaded spent fuel of a VVER 1000 reactor, operated in an 18-month fuel cycle,  differ when using a core model from a simple model of an infinite fuel  assembly. The simulation was carried out using the Serpent 2 software that  implements the Monte-Carlo method. As a result of the verification, the created  full core model showed good agreement with the reference values for the main  neutron-physical characteristics. It was determined that the average burnup of  unloaded fuel assemblies is 50.74 MW·day/kgHM. The nuclide composition of the  unloaded SNF was obtained. The article presents the elemental composition of  spent fuel, as well as the isotopes that make the main contribution to the dose  rate from alpha-, beta- and gamma-radiation. In order to increase the speed of  such calculations, a model of an infinite fuel assembly has been developed. The  effective enrichment was selected in accordance with the results obtained from  the core model. Comparison of the composition of unloaded spent fuel using an  infinite fuel assembly model showed good agreement with the composition  obtained using a full core model. We can recommend using a simplified version  of calculating the nuclide composition based on the model of an infinite fuel  assembly.
  
 Keywords
nuclear physics modeling,  Monte-Carlo method, Serpent, nuclide composition calculation, spent nuclear  fuel (SNF), verification, infinite fuel assembly model, core model
 Article Text (PDF, in Russian)
 References
  
 
  - Normy i pravila. Sbor, pererabotka, khraneniye i konditsionirovaniye  zhidkikh radioaktivnykh otkhodov. Trebovaniya bezopasnosti: NP-019-2015: utv. prikazom Federal'noy sluzhby  po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 25.06.2015 № 242. NP-019-2015  [Collection, processing, storage and conditioning of liquid radioactive waste.  Safety requirements]. Gosatomnadzor Rossii Publ., 2015, 21 p.
- Aloy  A.S., Blokhin A.I., Blokhin P.A., Kovalev N.V. Radiatsionnyye kharakteristiki  borosilikatnogo stekla, soderzhashchego vysokoaktivnyye otkhody [Radiation  Characteristics of Borosilicate Glass Containing High-Level Waste]. Radioaktivnyye  otkhody – Radioactive Waste, 2020, no. 3 (12), pp. 93–100. DOI: 10.25283/2587-9707-2020-3-93-100.
- Fedorov  Y.S., Bibichev B.A., Zil'berman B.Y., Kudryavtsev E.G. Use of Recovered Uranium  and Plutonium in Thermal Reactors. At Energy, 2005, no. 99, issue 2,  pp. 572–576. DOI: https://doi.org/10.1007/s10512-005-0248-9.
- Kovalev  N.V., Zilberman B.Ya., Goletskiy N.D., Sinyukhin A.B. Novyy podkhod k  povtornomu is-pol'zovaniyu otrabotavshego yadernogo topliva teplovykh reaktorov  v ramkakh kontseptsii REMIKS [A new approach to spent nuclear fuel  recycling for light water reactors in the frame of remix concept]. Izvestiya  vuzov. Yadernaya Energetika, 2020, no. 1, pp. 67–77. DOI: https://doi.org/10.26583/npe.2020.1.077.
- Kovalev  N.V., Prokoshin A.M., Kudinov A.S., Nevinitsa V.A. Ispol'zovaniye plutoniya iz  otrabotavshego smeshannogo topliva REMIKS v reaktore BN-1200 [Use of REMIX  Spent Mixed Fuel Plutonium in the BN-1200 Reactor]. Izvestiya vuzov.  Yadernaya Energetika, 2023, no. 1, pp. 70–81. DOI: https://doi.org/10.26583/npe.2023.1.06.
- Kislov  A.I., Titov A.A., Dmitriev A.M., Sintsov A.E., Romanov A.V. Radiatsionnyye  aspekty ispol'zovaniya regenerirovannogo urana na OAO MSZ pri proizvodstve  yadernogo topliva [Radiation aspects of the use of regenerated uranium at JSC  MSZ in the production of nuclear fuel]. Yadernaya i radiatsionnaya  bezopasnost' – Nuclear and Radiation Safety Journal, 2012, Special Issue,  pp. 52–60.
- Postovarova  D.V., Kovalev N.V., Onegin M.S., Bibichev B.A. Radiatsionnyye kharakteristiki  REMIKS-topliva pri mnogokratnom retsikle v reaktorakh VVER-1000 [Radiation  characteristics of REMIX-fuel multirecycling  in VVER-1000 reactor]. Izvestiya vuzov. Yadernaya Energetika, 2016, no.  1, pp. 100–110. DOI:  https://doi.org/10.26583/npe.2016.1.11.
- Kovalev  N.V., Prokoshin A.M., Kudinov A.S., Nevinitsa V.A., Nikandrova M.V., Goletsky  N.D. Ispol'zovaniye programmnykh sredstv SCALE, MCNP, SERPENT pri opredelenii  nuklidnogo sostava OYAT teplovykh reaktorov [Use of SCALE, MCNP, SERPENT  software for determining the nuclide composition of SNF from thermal reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty –  Problems of Atomic Science and Technology. Series: Nuclear and Reactor  Constants, 2023, no. 1, pp. 41–52. 
- Leppänen  J., Pusa M., Viitanen T., Valtavirta V., Kaltiaisenaho T. The Serpent Monte  Carlo code: Status, development and applications in 2013. Annals of Nuclear  Energy, 2015, no. 82, pp. 142–150. DOI: https://doi.org/10.1016/j.anucene.2014.08.024
- Leskin S.T., Shelegov A.S.,  Slobodchuk V.I. Fizicheskiye osobennosti i konstruktsiya reaktora VVER-1000:  Uchebnoye posobiye [Physical features and design of the VVER-1000 reactor:  Tutorial]. Moscow, NIYAU MIFI Publ., 2011. 116 p. 
- Kovalchuk M.V., Sidorenko V.A.,  Kosourov K.B., Semchenkov Yu.M., Shtrombach Ya.I. Prakticheskiye osnovy  razrabotki i obosnovaniya tekhnicheskikh kharakteristik i bezopasnosti  ekspluatatsii reaktornykh ustanovok tipa VVER [Practical basis for the  development and justification of technical characteristics and operational  safety of VVER-type reactor plants]. Moscow, NITS “Kurchatovskiy institute”  Publ., 2015. 478 p.
- Skorokhodov D.N., Milto N.V.,  Kalinushkin A.E., Semchenkov Yu.M., Lipin N.V., Kurchenkov A.Yu. Programma  Khortitsa-M. Ustoychivost' resheniya uravneniya vosstanovleniya k vozmushcheniyu  vkhodnykh dannykh [Program Hortitsa-M. Stability of Solution of the  Reconstruction Equation to Perturbation of Input Data]. Voprosy atomnoy  nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic  Science and Technology. Series: Nuclear and Reactor Constants, 2020, no. 5,  pp. 30–42.
- Andrushechko S.A., Afrov A.M.,  Vasilyev B.Yu., Generalov V.N., Kosourov K.B., Semchenkov Yu.M., Ukraintsev  V.F. AES s reaktorom VVER-1000. Ot fizicheskikh osnov ekspluatatsii do  evolyutsii proyekta [NPP with VVER-1000 reactor. From the physical  foundations of operation to the evolution of the project]. Moscow, Logos Publ.,  2010. 604 p. 
- Semchenkov Yu.M. Ispol'zovaniye  topliva v reaktorakh VVER: sostoyaniye i perspektivy [Use of fuel in VVER  reactors: status and prospects]. Rosenergoatom, 2014, no. 14, pp. 8–13. 
- Vygovsky S.B., Ryabov N.O., Semenov A.A., Chernov E.V., Bogachek L.N. Fizicheskiye i konstruktsionnyye  osobennosti yadernykh energeticheskikh ustanovok s VVER: uchebnoye posobiye [Physical and structural features of nuclear power plants with VVER:  training manual]. Moscow, NIYAU MIFI Publ., 2011. 376 p. 
  
  UDC 621.039.5 
  Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 1, 1:3