EDN: OXDIGX
Authors & Affiliations
Bayaskhalanov M.V., Merinov I.G., Kharitonov V.S., Korsun A.S.
National Research Nuclear University MEPhI, Moscow, Russia
Bayaskhalanov M.V. — Senior Lecturer, Department of Thermophysics. Contacts: 31, Kashirskoye sh., Moscow, Russia, 115409. Tel.: +7 (925) 876-14-28; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Merinov I.G. — Associate Professor of the Department of Nuclear Physics and Technology, Cand. Sci. (Tech.).
Kharitonov V.S. — Associate Professor of the Department of Nuclear Physics and Technology, Cand. Sci. (Tech.).
Korsun A.S. — Associate Professor, Cand. Sci. (Tech.).
Abstract
The paper presents a description of a software module designed to simulate thermal-hydraulic processes in the core and heat exchange equipment of promising nuclear reactors with liquid metal coolant. In the software module, using the finite element method, the use of a model of an anisotropic porous body is implemented; an integral turbulence model is used to close the model equations. The results of validation calculations on the problem of studying the mass transfer of Na-K coolant in a 19-rod experimental fuel assembly are presented. The experiments investigated stationary velocity fields in a bundle of rods with partial blocking of the flow section of the fuel assembly. The presence of the blocking made it possible to evaluate the adequacy of the modeling of mass transfer processes by the developed software module under conditions of intense coolant flows into the fuel assemblies. A comparison of the results obtained in the course of calculations with experimental data showed that the software module is capable of describing with sufficient accuracy the mass transfer in a fuel assembly in the presence of a blocked flow area. Thus, the developed software module can be used to simulate processes with a clearly defined three-dimensional flow pattern in a bundle of rods.
Keywords
heat and mass transfer, sodium-potassium alloy, liquid metal, simaulation, porous body model, turbulence, blocking, vortex
Article Text (PDF, in Russian)
References
- Frignani M., Alemberti A., Tarantino M. ALFRED: A revised concept to improve pool related thermal-hydraulics. Nuclear Engineering and Design, 2019, vol. 355, p. 1103592. DOI: https://doi.org/10.1016/j.nucengdes.2019.110359.
- Belaya kniga yadernoy energetiki. Zamknutyy YATTS s bystrymi reaktorami. Pod obshch. red. prof. Ye.O. Adamova [White Paper on Nuclear Energy. Closed nuclear fuel cycle with fast reactors. Ed. prof. E.O. Adamov]. M.: Izd-vo AO “NIKIET” Publ., 2020. 502 p.
- Mosunova N.A. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models. Therm. Eng., 2018, vol. 65, pp. 304–316. DOI: https://doi.org/10.1134/S0040601518050063.
- Rachkov V.I., Khomyakov Y.S., Shvetsov Y.E. Russian Codes for Safety Analysis of Sodium-Cooled Fast Reactors. At Energy, 2014, vol. 116, pp. 265–270. DOI: https://doi.org/10.1007/s10512-014-9852-x.
- Ashurko Y.M., Volkov A.V., Raskach K.F. Development of program modules with space-time kinetics for calculating unanticipated accidents in fast reactors. At Energy, 2013, vol. 114, pp. 77–82. DOI: https://doi.org/10.1007/s10512-013-9675-1.
- Alipchenkov V.M., Boldyrev A.V., Veprev D.P. et al. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 2: Validation and Verification. Therm. Eng., 2018, vol. 65, pp. 627–640. DOI: https://doi.org/10.1134/S004060151809001X.
- Bol’shov L.A., Mosunova N.A., Strizhov V.F. et al. Next Generation Design Codes for a New Technological Platform for Nuclear Power. At Energy, 2016, vol. 120, pp. 369–379. DOI: https://doi.org/10.1007/s10512-016-0145-4.
- Korsun A.S., Vikulova S.V. K opredeleniyu soprotivleniya anizotropnogo poristogo tela. Trudy Vtoroy Rossiyskoy konferentsii po teploobmenu. V 8 tomakh [To the determination of the resistance of an anisotropic porous body. In Proc. 2nd Russian Naqtional Conf. on Heat Transfer. Vol. 5: Two-Phase Flows. Disperse Flows and Porous Media]. Moscow, MEI Publ., 1998. Vol. 5, pp. 215–218.
- Korsun A.S., Maslov Ju.A, Merinov I.G., Haritonov V.S. Effektivnaya teploprovodnost' teplonositelya, omyvayushchego sterzhnevuyu sborku. Trudy RNKT-4. T. 7 [Effective thermal conductivity of the coolant flowing around the rod assembly. Proceedings of RNKT-4]. Moscow, MEI Publ., 2006. Vol. 7, pp. 235–238.
- Bayaskhalanov M.V., Merinov I.G., Korsun A.S., Philippov M.Ph. Determination of the turbulence integral model parameters for a case of a coolant angular flow in regular rod-bundle. Journal of Physics: Conference Series, 2017, vol. 871, no. 1. DOI: 10.1088/1742-6596/891/1/012062.
- Kazantsev A.A., Yuriev Yu.S., Supotnitskaya O.V., Astakhova N.E. System of equations for simulation of fluid motion in porous body approximation for npp equipment. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2022, no. 2, pp. 241–260. Available at: https://vant.ippe.ru/en/year2022/2/thermal-physics-hydrodynamics/2193-19.html (accessed 14.06.2024).
- Korsun A.S., Kruglov V.B., Merinov I.G., Fedoseev V.N., Kharitonov V.S. Heat and mass transfer in an array of rods in the approximation of porous medium. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2014, no. 2, pp. 88–95. Available at: https://vant.ippe.ru/en/year2014/2/864-9.html (accessed 14.06.2024).
- Chudanov V.V, Aksenova A.E., Makarevich A.A., Pervichko V.A., Romero Reyes I.V. Use of CFD-code CONV-3D in reactor applications. At. Energy, 2017, vol. 121, pp. 179–184. DOI: 10.1007/s10512-017-0180-9.
- Anderson N.B., Jackson R. A Fluid Mechanical Description of Fluidized Beds. Ind. Eng. Chem. Fundam., 1967, vol. 6, pp. 527–538. DOI: 10.1021/i160024a007.
- Slattery J.C. Flow of Viscoelastic Fluids Through Porous Media. AIChE Journal, 1967, vol. 13, pp. 1066–1071. DOI: https://doi.org/10.1002/aic.690130606.
- Whitaker S. Diffusion and Dispersion in Porous Media. AIChE Journal, 1967, vol. 13, pp. 420–427. DOI: 10.1002/aic.690130308.
- Vlasov M.N., Korsun A.S., Maslov Yu.A., Merinov I.G., Rachkov V.I., Kharitonov V.S. Determination of integral turbulence model parameters as applied to calculation of rod-bundle flows in porous-body approximation. Teplophys. Aeromech., 2016, vol. 23, pp. 201–209. DOI: 10.1134/S0869864316020062.
- The FEniCS computing platform. Available at: http://fenicsproject.org/ (accessed 14.06.2024).
- Taylor C., Hood P. A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids, 1973, vol. 1, pp. 73–100. DOI: 10.1016/0045-7930(73)90027-3.
- PARAVIEW. Open source post-processing visualization engine. Available at: https://www.paraview.org/ (accessed 14.06.2024).
- Zhukov A.V., Matyukhin N.M., Rymkevich K.S. Vliyaniye blokirovki prokhodnogo secheniya mo-del'noy sborki kassety tvelov bystrogo reaktora na raspredeleniye skorostey teplonositelya [Influence of blocking of through passage section of model assembly of the cartridge fuel elements fast reactors on distribution of speed of the heat-carrier]. Preprint FEI-1479 – Preprint IPPE-1479. Obninsk, 1983. 16 p.
- Zhukov A.V., Matyukhin N.M., Rymkevich K.S. Raspredeleniye potokov teplonositelya i mezhkanal'nyy obmen v model'noy TVS bystrogo reaktora pri blokirovke prokhodnogo secheniya [Distribution of coolant flows and inter-channel exchange in a model fast reactor fuel assembly when the flow section is blocked]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernaya tekhnika i tekhnologiya – Problems of Atomic Science and Technology. Series: Nuclear Engineering and Technology. 1989, issue 5, pp. 3–9.
- Korsun A.S., Merinov I.G., Kharitonov V.S. et al. Numerical Simulation of Thermal-Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation. Therm. Eng., 2019, vol. 66, pp. 225–234. DOI: https://doi.org/10.1134/S0040601519040049.
- Korsun A.S., Merinov I.G., Kharitonov V.S. et al. Simulation of Heat and Mass Transfer in Wire-Wrapped Fuel Assemblies in the Anisotropic Porous Body Approximation. Therm. Eng., 2020, vol. 67, pp. 405–412. DOI: https://doi.org/10.1134/S0040601520060063.
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 2, 2:17