PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY
Series: Nuclear and Reactor Constants

since 1971

Русский (РФ)

ISSN 2414-1038 (online)

ON THE QUESTION OF WETTABILITY OF 12Cr18Ni9Тi STEEL BY LIQUID TIN

EDN: TQQOKB

Authors & Affiliations

Alchagirov B.B., Kanametova O.Kh., Shiryaev K.A., Kokov Z.A., Dyshekova F.F.
Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia

Alchagirov B.B. – Professor of the Department of Theoretical and Experimental Physics, Dr. Sci. (Phys.-Math.). Contacts: 173, Chernishevskogo St., Nal’chik, Kabardino-Balkarian Republic, Russia, 360004. Tel.: +7 (963) 281-98-27; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Kanametova O.Kh. – Senior Lecturer.
Shiryaev K.A. – 2d year Master's Student at the Institute of Physics and Mathematics.
Kokov Z.A . – Associate Professor of Department of Theoretical and Experimental Physics, Cand. Sci. (Phys.-Math.)/
Dyshekova F.F. – Senior Lecturer, Cand. Sci. (Phys.-Math.).

Abstract

Tin is one of few metals with low melting points that can be used in nuclear reactor chambers and for soaking capillary-porous protection systems (CPS) for the plates covering the internal walls of nuclear reactors. Tin has certain advantageous physical and chemical properties; for example, compared to lithium, the pressure of its saturated vapor is thousand times lower, which allows it to be used at the higher limits of the temperature range most needed for nuclear reactors. This was evidenced in the results of joint experimental studies of Italian and Russian scientists G. Mazzitelli, M.L. Apicella, A. Vertkov, I. Lyublinski who tested for the first time the CPS soaked with pure tin under conditions where the tokamak’s limiter was subjected for short periods to plasma with thermal impact of up to 18 MWt/m2 and demonstrated that CPS soaked with tin remained functional under these conditions. This study establishes the temperature dependency of the wetting angle θ(Т) of steel 12Х18Н9Т by liquid tin in the temperature range of 510–920 K, in vacuum, using the sessile drop method. A critical temperature of wettability (CTW), also referred to as threshold temperature, was found on the system’s θ(Т) polytherm at 870 K. The study reviews experimental data available in the literature on θ(Т) with CTW for wettability of steel 12Х18Н9Т by liquid led and its alloy Pb20Bi80, etc. The occurrence of CTW was explained mainly by the presence of oxides on the surfaces of solids and by the chemical reactions involving the oxides at the interphase boundaries of liquid metals. The authors of this study attribute the occurrence of CTW on θ(Т) curves mainly to the onset of the process of mutual solution of alloyants in steel 12Х18Н9Т, primarily of chromium (18 %), nickel (8–9 %), iron (base, about 70 %mass), etc.

Keywords
liquid metals, tin, structural steels, interphase boundaries, edge and contact wetting angles, capillary-porous systems, nuclear power plants, plasma, divertor, first wall surface protection, interaction of liquid metals with the surface, melting, solubility, corrosion, erosion

Article Text (PDF, in Russian)

References

  1. Vertkov A.V., Lyublinskiy I.Ye. Opyt razrabotki zhidkometallicheskikh elementov, obrashchennykh k plazme statsionarnogo tokamaka (Obzor) [Experience in the Development of Liquid Metal Plasma Facing Elements Based on Capillary Pore Structure for Steady State Operating Tokamak]. Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez – Problems of Atomic Science and Technology. Series Thermonuclear Fusion,2017, vol. 40, issue 3, pp. 5–13.
  2. Safronov V.M. Povrezhdeniya obrashchennykh k plazme materialov ITER: chto issledovano i chto neobkhodimo izuchit' [Damage to ITER Plasma-Facing Materials: What Has Been Researched and What Needs to Be Studied]. Materialy XXVII konferentsii “Vzaimodeystviye plazmy s poverkhnost'yu” [Proc. of the XXVII Conference “Plasma-Surface Interaction”]. Moscow, 2019, pp. 117–119.
  3. Grigore E., Ruset C., Gherendi M., Chioibasu D., Hakola A. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W. Physica Scripta, 2016, vol. 2016, no. T167, p. 014028. DOI: 10.1088/0031-8949/T167/1/014028.
  4. Coenen J.W., Temmerman G.De., Federici G., Philipps V., Sergienko G., Strohmayer. G, Terra A., Unterberg B., Wegener T., Van den Bekerom D.C.M. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective. Physica Scripta, 2014, vol. 2014, no. T159, р. 014037.
  5. Nygren R.E., Tabarés F.L. Liquid surfaces for fusion plasma facing components – A critical review. Part I: Physics and PSI. Nuclear Materials and Energy, 2016, vol. 9, pp. 6–21.
  6. Evtikhin V.A., Lyublinskiy I.Ye., Vertkov A.V. Kontseptsiya litiyevogo divertora i eksperimenty v yeye obosnovaniye [The concept of a lithium divertor and experiments to justify it]. Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez – Problems of Atomic Science and Technology. Series Thermonuclear Fusion, 2002, no. 1–2, pp. 17–39.
  7. Yang J.C., Qi T.Y., Liu B.Q., Ni M.J. Experimental study on liquid metal film flows related with nuclear fusion engineering. 5th International Symposium on Liquid Metals for Fusion, Moscow, 2017, р. 57.
  8. Jeppson D.W., Ballif J.L., Yuan W.W., Chou B.E. Lithium literature review: lithium's properties and interactions. Hanford engineering development laboratory. Prepared for the U.S. Department of Energy under Contract No. EY-76-C-14-2170, 1978, р. 116.
  9. Pucella G. et al. Preprint: 2016 IAEA Fusion Energy Conf. (Kyoto, Japan, 17-22 October 2016)OV/P-4.
  10. Mirnov S.V., Azizov E.A., Evtikhin V.A., Lazarev V.B., Vertkov A.V. Experiments with lithium limiter on T-11M tokamak and applications of the lithium capillary-pore system in future fusion reactor devices. Plasma Physics and Controlled Fusion, 2006, vol. 48, рp. 821–837.
  11. Stangeby P.C. The Plasma Boundary of Magnetic Fusion Devices. IOP. Plasma Physics Series. University of Toronto Institute for Aerospace Studies. London: Taylor & Francis, 2000. 703 p.
  12. Wang J., Wang H., Xie J., Yang A., Pei A., Wu C., Shi F., Liu Y., Lin D., Gong Y., Cui Y. Fundamental study on the wetting property of liquid lithium. Energy Storage Materials, 2018, vol. 14, pp. 345–350.
  13. Yang J.-C., Liu B.-Q., Huang Y.-F., Lyu Z., Dong Q.-R., Pan J.-H., Ni M.-J. Experimental investigation of the flowing lithium limiter. Part 1. The spreading characteristics of lithium on solid substrate
    without an external magnetic field. Fusion Engineering and Design, 2023, vol. 189, р. 113489. DOI: https://doi.org/10.1016/j.ensm.2018.05.021.
  14. Pashechko M., Vasyliv C. Solubility of metals in fusible melts. Materials Science, 1996, vol. 31, no. 4, рp. 485–492.
  15. Azhazha V.M., Gnedaya I.L. Shchelochnyye metally – polucheniye, svoystva, primeneniye. Voprosy atomnoy nauki i tekhniki. Seriya: Vakuum, chistyye materialy, sverkhprovodniki – Problems of Atomic Science and Technology. Series: Vacuum, pure materials, superconductors, 2006, no. 1, pp. 184–194.
  16. Meng X., Zuo G., Sun Z., Xu W., Huang M., Xu C., et al. Compatibility of Molybdenum, Tungsten and 304 Stainless Steel in Static Liquid Lithium under High Vacuum. Plasma Physics Reports, 2018, vol. 44, no. 7, рp. 671–677.
  17. Furukawa T., Hirakawa Y., Kondo H., Kanemura T., Wakai E. Chemical reaction of lithium with room temperature atmosphere of various humidities. Fusion Engineering and Design, 2015, vol. 98–99, pp. 2138–2141.
  18. Legkikh A.Yu., Askhadullin R.Sh., Sadovnichiy R.P. Obespecheniye korrozionnoy stoykosti staley v tyazhelykh kometallicheskikh teplonositelyakh [Assurance of corrosion resistance of steels in heavy liquid metal coolants]. Izvestiya vuzov. Yadernaya energetika, 2016, no. 1, pp. 138–148. DOI: https://doi.org/10.26583/npe.2016.1.15.
  19. Mazzitelli G., Apicella M.L., Iafrati M., Apruzzese G., Bombarda F., Crescenzi F., Gabellieri L., Mancini A., Marinucci M., Romano A. and the FTU Team. Experiments on the Frascati Tokamak Upgrade with a liquid tin limiter. Nuclear Fusion, 2019, vol. 59, no. 9, p. 096004. DOI: https://doi.org/10.1088/1741-4326/ab1d70.
  20. Mazzitelli G., Apicella M.L., Iafrati M., Apruzzese G., Crescenzi F., Gabellieri L., Mancini A., Marinucci M., Romano A. and the FTU Team. First tokamak experiments with a liquid tin limiter. Preprint of Paper to be submitted for publication in Physical Review Letters. Available at: https://scipub.euro-fusion.org/wp-content/uploads/eurofusion/WPDTT1PR17_18605_submitted.pdf (accessed 21.08.2024).
  21. Mazzitelli G., Apicella M.L., Iafrati M., Apruzzese G., Buscarino A., et al. Liquid metal experiments on FTU. 2016 IAEA Fusion Energy Conf. (Kyoto, Japan, 17-22 October 2016) EX/P8-21. Available at: https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fec2016-preprints/preprint0224.pdf (accessed 21.08.2024).
  22. Ridolfini V.P., Zagorski R., Crisanti F., Granucci G., Mazzitelli G., Pieroni L., Romanelli F. Characterisation of the scrape-off layer plasma in the FTU tokamak. Journal of nuclear materials, 1995, vol. 220, pp. 218–222.
  23. Vertkov A., Lyublinski I., Zharkov M., Mazzitelli G., Apicella M.L., Iafrati M. Liquid tin limiter for FTU tokamak. Fusion Engineering and Design, 2017, vol. 117, pp. 130–134.
  24. Morgan T.W., Van Den Bekerom D.C.M., De Temmerman G. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions. Journal of nuclear materials, 2015, vol. 463, pp. 1256–1259.
  25. Summ B.D., Goryunov Yu.V. Fiziko-khimicheskiye osnovy smachivaniya i rastekaniya [Physicochemical foundations of wetting and spreading]. Moscow, Khimiya Publ., 1976. 302 p.
  26. Naidich Y.V. The Wettability of Solids by Liquid Metals. Progress in Surface and Membrane Science. Еd. D.A. Cadenhead and J.F. Danielli. New York: Academic Press, 1981. Vol. 14, p. 353.
  27. Drelich J.W., Boinovich L., Chibowski E., Della Volpe C., Hołysz L., Marmur A., Siboni S. Contact angles: History of over 200 years of open questions. Surface Innovations, 2019, vol. 8, no. 1–2, pp. 3–27.
  28. Dokhov M.P., Sherieva E.K., Tsipinova A.K. Smachivaniye vol'frama i reniya zhidkim olovom i raschet ikh mezhfaznykh energiy v zavisimosti ot temperatury [Tungsten and Rhenium Wetting with Liquid Tin and the Calculation of Their Temperature-Dependent Interface Energies]. Teplofizika Vysokikh Temperatur – High Temperature, 2021, vol. 59,no. 4, pp. 638–640.
  29. Alchagirov B.B., Khokonov Kh.B. Smachivayemost' poverkhnostey tverdykh tel rasplavami shche-lochnykh metallov i splavami s ikh uchastiyem: Teoriya i metody issledovaniya [Wettability of solid surfaces with alkali metal melts and alloys containing them: Theory and research methods]. Teplofizika vysokikh temperature – High Temperature, 1994, vol. 34, no. 4, pp. 590–626; Eksperiment. Teplofizika vysokikh temperature – High Temperature, 1994, vol. 34, no. 5, pp. 756–783.
  30. Protsenko P.V. Smachivaniye poverkhnosti i granits zeren tugoplavkikh metallov legkoplavkimi rasplavami. Avtoref. dis. kand. khim. nauk [Wetting of the Surface and Grain Boundaries of Refractory Metals with Low-Metals Melts. Abstract of Cand. Sci. (Chem.)]. Moscow, MSU, 2002. 24 p.
  31. Emel'yanenko A.M., Boynovich L.B. Analiz smachivaniya kak effektivnyy metod izucheniya pokrytiy, poverkhnostey i proiskhodyashchikh na nikh protsessov. Obzor [Analysis of wetting as an effective method for studying the characteristics of coatings, surfaces and processes occurring on them. Review]. Zavodskaya laboratoriya. Diagnostika materialov – Industrial Laboratory. Diagnostics of Materials, 2010, vol. 76, no. 9, pp. 27–36.
  32. Della Volpe C., Siboni S. Use, abuse, misuse and proper use of contact angles: a critical review. ReviewsofAdhesionandAdhesives, 2015, vol. 3, № 4, pp. 365–385.  
  33. Ispol'zovaniye zhidkikh metallov v narodnom khozyaystve. Sbornik dokladov mezhotraslevoy konferentsii “Teplofizika-91” [Use of liquid metals in the national economy. Proc. of the Interdisciplinary Conference “Thermophysics-91”. Ed. F. Kozlov]. Obninsk, IPPE, ONTI, 1993. 268 p.
  34. Subbotin V.I., Arnol'dov M.N., Kozlov F.A. et al. Liquid-Metal Coolants for Nuclear Power. Atomic Energy, 2002, vol. 92, pp. 29–40. DOI: https://doi.org/10.1023/A:1015050512710.
  35. Baranov M.I. An anthology of the distinguished achievements in science and technique. Part 44: Traditional power engineering. Nuclear power stations: retrospective view, state and prospects of their development. Electrical engineering & electromechanics, 2018, no. 3, pp. 3–16. DOI: 10.20998/2074-272X.2018.3.01.
  36. Subbotin V.I., Arnol'dov M.N., Ivanovskiy M.N. et al. Litiy [Lithium]. Moscow, IzdAT Publ., 1999. 263 p.
  37. Alchagirov B.B., Dadashev R.Kh., Dyshekova F.F., Kanametova O.Kh., Elimkhanov D.Z. Izucheniye poverkhnostnykh svoystv zhidkostey s ispol'zovaniyem sovremennykh avtomatizirovannykh eksperimental'nykh ustanovok [Study of surface properties of liquids using modern automated experimental setups]. Nal'chik, KBSU Publ., 2021. 144 p.
  38. Alchagirov B.B., Dyshekova F.F., Kokov Z.A., Kyasova O.Kh. et al. Eksperimental'naya ustanovka dlya izucheniya smachivayemosti zhidkometallicheskimi rasplavami poverkhnostey tverdykh tel [Experimental setup for studying the wettability of solid surfaces by liquid metal melts]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya – Bulletin of the Russian Academy of Sciences: Physics, 2017, vol. 81, no. 5, pp. 703–708.
  39. Arnol'dov M.N., Karzhavin V.A., Trofimov A.I. Osnovy metrologicheskogo obespecheniya temperaturnogo kontrolya reaktornykh ustanovok [Fundamentals of metrological support for temperature control of reactor installations]. Moscow, Izd. dom MEI Publ., 2012. 243 p.
  40. Fiflis P., Press A., Xu W., Andruczyk D., Curreli D., Ruzic D.N. Wetting properties of liquid lithium on select fusion relevant surfaces. Fusion Engineering and Design, 2014, vol. 89, no. 12, рp. 2827–2832.
  41. Protsenko P., Terlain A., Jeymond M., Eustathopoulos N. Wetting of Fe–7.5% Cr steel by molten Pb and Pb–17Li. Journal of Nuclear Materials, 2002, vol. 307, рp. 1396–1399.
  42. Alchagirov B.B., Taova T.M., Khokonov Kh.B. Temperaturnaya zavisimost' smachivayemosti reaktornykh staley zhidkim svintsom, vismutom i evtektikoy PbBi c dobavleniyem litiya v intervale ot 500 do 1800 K [Temperature dependence of wettability of reactor steels with liquid lead, bismuth and PbВi eutectic with the addition of lithium in the range from 500 to 1800 K]. Sbornik dokladov nauchno-tekhnicheskoy konferentsii “Teplofizika reaktorov novogo pokoleniya (Teplofizika-2018)” [Proc. of the Scientific and Technical Conference “Thermal physics of new generation reactors (Thermal physics-2018)”]. Obninsk: GNTS RF – FEI, 2018, pp. 79–87.
  43. Prozenko P., Terlain A., Traskine V., Eustathopoulos N.The role of intermetallics in wetting in metallic systems. Sсripta Materialia, 2001, vol. 45, рp. 1439–1445.
  44. Pashechko M., Vasyliv C. Solubility of metals in low-melting melts. Zeitschrifi fur Metallkunde. (1997). vol. 88, no. 6, рp. 484–488.

UDC 546.811; 532.63; 532.64; 532.696; 534.2; 536.4.032

Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 3, 3:13