PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY
Series: Nuclear and Reactor Constants

since 1971

Русский (РФ)

ISSN 2414-1038 (online)

SIMULATION BY THE MATADOR CODE FOR HEAT AND MASS TRANSFER PROCESSES IN FUEL ASSEMBLIES OF FAST REACTORS WITH WIRE WRAPPED SPACING

EDN: QSOSQN

Authors & Affiliations

Zalesov A.S.
OKB Gidropress, Podolsk, Russia

Zalesov A.S. – Lead Design Engineer. Contacts: 21, st. Ordzhonikidze, Podolsk, Moscow region, Russia, 142103. Tel.: +7 (495) 502-79-13, add. 15-86; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..

Abstract

The purpose of the presented work was to develop the MATADOR code for modeling heat and mass transfer processes in fuel assemblies of fast reactors with spacing by wire wrapped. In the article, the computational-theoretical models that take into account the influence of spiral wire winding within the framework of the sub-channel approach of the thermohydraulic calculation were analyzed. New correlations were implemented into the code to close the system of mass, momentum and energy transfer equations with a wide variation range of geometric and regime parameters. The efficiency of the changes made to the MATADOR code was confirmed by calculations based on the experiments performed at THEADES (Karlsruhe Liquid Metal Laboratory, Germany) and KYLIN-II (Institute of Nuclear Energy Safety Technology, China) test facilities with cooling of the rod bundles by lead-bismuth eutectic. The article provides a brief description of test bundles, calculation models and compares the results of calculations using the MATADOR code with experimental data and calculation results in the foreign sub-channel SACOS-PB code. Numerical simulation of hydrodynamics and heat transfer in rod bundles was carried out using generalized dependences for integral and local coefficients of inter-channel exchange. The analysis of computational studies confirmed the ability of the MATADOR code to reproduce experimental measurements with accuracy acceptable in engineering practice.

Keywords
subchannel (cell-by-cell) computer code, thermohydraulic calculation, heat transfer, hydrodynamics, liquid metal coolant, fast reactor, core, fuel assembly, fuel rod, wire wrapped

Article Text (PDF, in Russian)

References

  1. Kirillov P.L., Bobkov V.P., Zhukov A.V., Yur'yev Y.S. Spravochnik po teplogidravlicheskim raschotam v yadernoy energetike. Tom 1. Teplogidravlicheskiye protsessy v YAEU [Handbook of thermal hydraulic calculations in nuclear power engineering. Volume 1. Thermal hydraulic processes in NPI]. Moscow, IzdAt Publ., 2010. 776 p.
  2. Sorokin A.P., Kuzina Yu.A., Sorokin G.A., Denisova N.A. Modelirovaniye protsessov teplo- i massoobmena v TVS bystrykh reaktorov v ramkakh pokanal'nogo metoda rascheta. Obobshchennyye kharakteristiki obmena dlya odnofaznykh potokov zhidkikh metallov [Modeling of heat and mass transfer processes in fast reactor fuel assemblies within the framework of the channel-by-channel calculation method. Generalized exchange characteristics for single-phase flows of liquid metals]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, no. 2, pp. 104–130.
  3. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v TVS bystrykh reaktorov. Teoreticheskiye osnovy i fizika protsessov [Interchannel exchange in fuel assemblies of fast reactors. Theoretical foundations and physics of processes]. Moscow, Energoatomizdat Publ., 1989. 184 p.
  4. Ginsberg T. Forced-flow interchannel mixing model for fuel rod assemblies utilizing a helical wire-wrap spacer system. Nuclear Engineering and Design, 1972, vol. 22, no. 1, pp. 43–50.
  5. Wantland J.L. ORRIBLE – a computer program for flow and temperature distribution in 19-rod LMFBR fuel subassemblies. Nuclear Technology, 1974, vol. 24, no. 2, pp. 168–175.
  6. Ninokata H., Efthimiadis A., Todreas N.E. Distributed resistance modeling of wire-wrapped rod bundles. Nuclear Engineering and Design, 1987, vol. 104, no. 1, pp. 93–102.
  7. Zalesov A.S., Churkin A.N. Programma MATADOR dlya rascheta lokal'nykh neodnorodnykh protsessov teplomassoperenosa v puchkakh teplovydelyayushchikh sterzhney [MATADOR program for calculating local non-uniform heat and mass transfer processes in bundles of fuel rods]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2023, no. 3, pp. 29–40.
  8. Bogoslovskaya G.P., Zhukov A.V., Sorokin A.P. Models and characteristics of interchannel exchange in pin bundles cooled by liquid metal. LMFR Core Thermohydraulics: Status and Prospects. TECDOC-1157. Vienna, Austria, 2000. Pp. 191–206.
  9. Cheng S.K., Todreas N.E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles – bundle friction factors, subchannel friction factors and mixing parameters. Nuclear Engineering and Design, 1986, vol. 92, no. 2, pp. 227–251.
  10. Pacio J., Chen S.K., Chen Y.M., Todreas N.E. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing. Part I: The Pacio-Chen-Todreas Detailed model (PCTD). Nuclear Engineering and Design, 2022, vol. 388, 111607.
  11. Suh K.Y., Todreas N.E. An experimental correlation of cross-flow pressure drop for triangular array wire-wrapped rod assemblies. Nuclear Technology, 1987, vol. 76, no. 2, pp. 229–240.
  12. Stewart C.W., Wheeler C.L., Cena R.J., McMonagle C.A., Cuta J.M., Trent D.S. COBRA-IV: The model and the method. Pacific Northwest Laboratories, 1977.
  13. Jeong H.Y., Ha K.S., Chang W.P., Kwon Y.M., Lee Y.B. Modeling of Flow Blockage in a Liquid Metal-Cooled Reactor Subassembly with a Subchannel Analysis Code. Nuclear Technology, 2005, vol. 149(1), pp. 71–87. DOI: https://doi.org/10.13182/NT05-A3580.
  14. Bogatyrov I.L., Bogoslovskaya G.P., Zhukov A.V., Sorokin A.P., Titov P.A. Sistema konstant dlya pokanal'nogo teplogidravlicheskogo raschota rezhimov raboty TVS reaktorov s yestestvennoy i smeshannoy konvektsiyey [System of constants for channel-by-channel thermal-hydraulic calculation of operating modes of fuel assemblies of reactors with natural and mixed convection]. Preprint FEI-238 – Preprint IPPE-2238. 1992.
  15. Kazimi M.S., Carelli M.D. Clinch river breeder reactor plant heat transfer correlation for analysis of CRBRP assemblies. CRBRP-ARD-0034. Westinghouse, 1976.
  16. Ushakov P.A., Zhukov A.V., Matyukhin N.M. Teplootdacha k zhidkim metallam v pravil'nykh reshetkakh tvelov [Heat transfer to liquid metals in regular lattices of fuel elements]. Teplofizika vysokikh temperatur – High-temperature, 1977, no. 15, pp. 1027–1033.
  17. Mikityuk K. Heat transfer to liquid metal: review of data and correlation for tube bundles. Nuclear Engineering and Design, 2009, vol. 239, no. 4, pp. 680–687.
  18. Pacio J., Daubner M., Fellmoser F., Litfin K., Wetzel Th. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers. Nuclear Engineering and Design, 2016, vol. 301, pp. 111–127.
  19. Lyu K., Chen L., Yue C., Gao S., Zhou T., Huang Q. Preliminary thermal-hydraulic sub-channel analysis of 61 wire-wrapped bundle cooled by lead bismuth eutectic. Annals of Nuclear Energy, 2016, vol. 92, pp. 243–250.
  20. Wu D., Wang C., Gui M., Lan Z., Lu Q., Zhang D., Tian W., Qiu S., Su G.H. Improvement and validation of a sub-channel analysis code for a lead-cooled reactor with wire spacers. International Journal of Energy Research, 2020, pp. 1–18. DOI: https://doi.org/10.1002/er.6015.

UDC 621.039.534…23

Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 3, 3:15