EDN: SRHDKS
Authors & Affiliations
Kolesov V.V.1, Korobeynikov V.V.2, Isanov K.A.2, Pupko L.P.2
1 Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University, Obninsk, Russia
2 A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Korobeinikov V.V.2 – Chief Researcher, Professor, Dr. Sci. (Phys.-Math.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-70-00(80-56), +7 (910) 863-70-98; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Isanov K.A.2 – Research Engineer.
Pupko L.P.2 – Research Fellow.
Kolesov V.V.1 – Associate Professor, Dr. Sci. (Phys.-Math.).
Abstract
Theoretical and computational studies of the possibility of using minor actinides as burnable absorbers in fast neutron reactors have been conducted. Fast neutron reactors are considered not only as a means of producing electrical and thermal energy and effectively increasing the fuel life, but also as a means of utilizing accumulated minor actinides.
Am with different nuclide compositions and Np-237 were used for the studies. The computational studies considered uranium and MOX fuels using different amounts of Am and Np oxide additives. The influence of spectral effects on different types and amounts of additives in uranium and MOX fuel for thermal and fast neutron reactors has been estimated. A comparison of fuel options in terms of the efficiency of burning minor actinides Am and Np has been made.
The work has investigated the amount of uranium and plutonium savings when adding Am or Np-237 to the fuel. It is evident that in options without Am or Np additives, the uranium consumption increases significantly. Thus, we can talk about obtaining additional thermal and electrical energy by burning long-lived high-level waste Am-241 and Np-237 in nuclear reactors.
It has been shown that americium used as an additive to MOX or uranium fuel in a fast neutron reactor allows not only to reduce the initial reactivity reserve, but also to significantly extend the reactor campaign.
Keywords
transmutation, burning of minor actinides, spent fuel, radioactivity, biological hazard, storage of spent fuel, neutron spectrum, heterogeneity
Article Text (PDF, in Russian)
References
- Bergelson B., Gerasimov A., Zaritskaya T., Kiselev G., Volovik A. Decay Heat Power and Radiotoxicity of Spent Uranium, Plutonium and Thorium Fuel at Long-Term Storage. Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18). Beijing, China, August 7–12, 2005, SMiRT18-W02-2.
- Salvatores M., Slessarev I., Uematsu M. A Global Physics Approach to Transmutation of Radioactive Nuclei. Nuclear Science and Engineering, 1994, vol. 116, pp. 1–18. DOI: https://doi.org/10.13182/NSE94-A21476.
- Japan Atomic Energy Agency – Nuclear Data Center. Japanese standard library for fast breeder reactors, thermal reactors, fusion neutronics and shielding calculations, and other applications (JENDL-4.0). JAEA-NDC, 2010. Available at: https://wwwndc.jaea.go.jp/jendl/j40/j40.html (accessed 04.12.2024).
- OECD NEA. French R&D on the Partitioning and Transmutation of Long-lived Radionuclides: An International Peer Review of the 2005 CEA Report. Papers: OECD Publishing, 2006.
- Oak Ridge National Laboratory. Preliminary Multicycle Transuranic Actinide Partitioning-Transmutation Studies. 2007. ORNL/TM-2007/24. Available at: https://www.academia.edu/50125953/Preliminary_Multicycle_Transuranic_Actinide_Partitioning_Transmutation_Studies?hb-sb-sw=30863732 (accessed 04.12.2024).
- Naoyuki Takaki. Neutronic Potential of Water Cooled Reactor With Actinide Closed Fuel Cycle. Progress in Nuclear Energy, 2000, vol. 37, pp. 1–4.
- Kloosterman J.L. Multiple Recycling of Plutonium in Advanced PWRs. Netherlands Energy Research Foundation (ECN), 1998. Available at: https://www.janleenkloosterman.nl/abstracts/klooster9803.pdf (accessed 04.12.2024).
- Gilles Youinou. Plutonium Multirecycling in Standard PWRs Loaded with Evolutionary Fuels. Nuclear Science and Engineering, 2005, vol. 151, pp. 25–45. DOI: 10.13182/nse05-a2526.
- Atomic Energy of Canada Limited (AECL). Scenarios for the Transmutation of Actinides In CANDU Reactors: Company Wide. Ontario: AECL, 2010. CW-123700-CONF-010.
- Kostadin Zashev. Transmutation of VVER-1000 Spent Nuclear Fuel in CANDU Reactors. Proc. of the Energy Forum'2017. Varna, Bulgaria, June 27–30 2017. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/50/011/50011131.pdf?r=1 (accessed 04.12.2024).
- Prunier C., Boussard F., Koch L., Coquerelle M.Some Specific Aspects of Homogeneous Americium- and Neptunium- Based Fuels Transmutation through the Outcomes of the SUPERFACT Experiment in Phenix Fast Reactor. Nuclear Technology, 1997, vol. 119, pp. 141–147. JRC15648.
- Guillaumont R. The Bataille's Law: Scientific Research for Nuclear Wastes in France. L'Actualité chimique, 2005, no. 285–286, pp. 8–12.
- Jean-Marc Bonnerot, Dominique Warin, Marie-Pierre Ferroud-Plattet, Lionel Gosmain, Jérôme Lamontagne. First Results of the Irradiation Program of Inert Matrices, Targets and Fuels for Minor Actinides Transmutation in Fast Reactor. Montpellier. 2008. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/003/40003966.pdf (accessed 04.12.2024).
- Chichester J.M., Steven L. Hayes, Kenneth J. McClellan, Stewart L. Voit, Fabienne Delage, Jean-Luc Paul, Marc Masson. Overview of the FUTURIX-FTA Irradiation Experiment in the Phénix Reactor. Proc. of Global 2015. Paris, France, September 20–24, 2015, Paper 5268. Available at: https://inldigitallibrary.inl.gov/sites/sti/sti/7146507.pdf (accessed 04.12.2024).
- Jason M. Harp, Luca Capriotti, Heather J.M. Chichester. Postirradiation Examination of FUTURIX-FTA metallic alloy experiments. Idaho: INL, 2019. INL/JOU-18-52239-Revision-0. Available at: https://www.sciencedirect.com/science/article/abs/pii/S002231151831376X (accessed 04.12.2024).
- Meyer M.K., Hayes S.L., Carmack W.J. Tsai H. The EBR-II X501 Minor Actinide Burning Experiment. Idaho: INL, 2008. INL/CON-08-13828 PREPRINT. Available at: https://inldigitallibrary.inl.gov/sites/sti/sti/4142529.pdf (accessed 04.12.2024).
- Tomonori Soga, Takashi Sekine, Kosuke Tanaka, Ryoichi Kitamura, Takafumi Aoyama. Irradiation Test of Fuel Containing Minor Actinides in the Experimental Fast Reactor Joyo. Journal of Power and Energy Systems, 2008, vol. 2, issue 2, pp. 692–702. DOI: https://doi.org/10.1299/jpes.2.692.
- International Atomic Energy Agency (IAEA). Status of Minor Actinide Fuel Development. No. NF-T-4.6. Vienna: IAEA, 2009.
- Kolesov V.V., Korobeynikov V.V., Mikhalyov A.V., Pupko L.P. Vliyaniye spektral'nykh i geterogennykh effektov na effektivnost' vyzhiganiya minornykh aktinidov [Influence of Spectral and Heterogeneous Effects on the Efficiency of Minor Actinide Burning]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2023, issue 1, pp. 74–90. EDN: MSHFDX.
- International Atomic Energy Agency (IAEA). Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel. IAEA-TECDOC-1626.Vienna: IAEA, 2009.
- Gulevich A.V., Eliseev V.A., Klinov D.A., Korobeynikova L.V., Kryachko M.V., Pershukov V.A., Troyanov V.M. Possibility of Burning Americium in Fast Reactors. Atomic Energy, 2020, vol. 128, issue 2, pp. 88–94. DOI: https://doi.org/10.1007/s10512-020-00656-w.
- Kosyakin D.A., Korobeynikov V.V., Stogov V.Yu. Issledovaniye zavisimosti effektivnosti transmutatsii Am-241 ot energeticheskoy struktury plotnosti neytronnogo potoka [Study of the dependence of the Am-241 transmutation efficiency on the energy structure of the neutron flux density]. Preprint FEI-3294 – Preprint IPPE-3294. Obninsk, IPPE Publ., 2021. 38 p.
- Korobeynikov V.V., Kolesov V.V., Ignatiev I.A.Raschotnoye modelirovaniye vyzhiganiya minornykh aktinidov v reaktore na bystrykh neytronakh s toplivom bez urana i plutoniya [Computational modeling of minor actinide burning in a fast reactor with fuel without uranium and plutonium]. Preprint FEI-3299 – Preprint IPPE-3299. Obninsk, IPPE Publ., 2022. 32 p.
- Korobeynikov V.V., Kolesov V.V., Karazhelevskaya Yu.E., Terekhova A.M. Issledovaniye voz-mozhnosti vyzhiganiya minornykh aktinidov v bystrom reaktore s metallicheskim toplivom na osnove tol'ko minornykh aktinidov [Study of the possibility of minor actinide burning in a fast reactor with metallic fuel based only on minor actinides]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, issue 1, pp. 59–68.
- Moseev A.L., Dekusar V.M., Korobeynikov V.V., Eliseev V.A. Issledovaniya potentsiala dvukhkomponentnoy sistemy YAE v raznykh usloviyakh yeyo razvitiya [Studies of the potential of a two-component nuclear power system under different conditions of its development]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, issue 2, pp. 189–205.
- Korobeynikov V.V., Karazhelevskaya Yu.E., Kolesov V.V., Terehova A.M. Issledovaniya voz-mozhnosti vyzhiganiya i transmutatsii Am-241 v reaktore s ameritsiyevym toplivom [Investigation of the possibility of Am-241 incineration and transmutation in ameritium-fueled reactor]. Izvestiya vuzov. Yadernaya Energetika,2019, no. 2, pp. 153–163. DOI: https://doi.org/10.26583/npe.2019.2.13.
- Dekusar V.M., Zrodnikov A.V., Eliseev V.A., Moseev A.L. K voprosu nakopleniya i reaktornoy utilizatsii ameritsiya v yadernoy energetike [On the Issue of Americium Accumulation and Reactor Utilization in Nuclear Power Engineering]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, issue 1, pp. 215–222.
UDC 621.039.54(04)
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 4, 4:10