EDN: OXRUCP
Authors & Affiliations
Melnikov I.A., Shmelkov G.B., Golubev M.A., Velikanov A.V.
National Research Center “Kurchatov Institute”, Moscow, Russia
Shmelkov G.B. – Junior Researcher. Contacts: 1, pl. Akademika Kurchatova, Moscow, Russia, 123098. Tel.: +7 (916) 269-83-21; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Melnikov I.A. – Deputy Head of Department, Cand. Sci. (Tech.).
Golubev M.A. – Junior Researcher.
Velikanov A.V. – Junior Researcher.
Abstract
The article presents the results of simulation of radiation heat transfer from the corium surface to the core catcher’s structures, located above, as a part of the analysis of hypothetical severe accident at the stage of cooling of corium at the core catcher for the NPP-2006 project. This process was simulated with the THERA module of the TSAR application package developed at the National Research Center “Kurchatov Institute”. The article presents a description of the calculation procedure based on zonal method for radiation heat transfer simulation. The spectral-line-weighted sum-of-grey-gases (SLWSGG) approach is used to calculate absorbing and emitting properties of a vapor-gas mixture in the computational domain. The results of simulation are presented in the form of density distribution of the net radiation fluxes over the surfaces of the cantilever truss. Also the article presents the results of simulation of the conjugate non-stationary problem of radiant heating of cantilever truss from the melt surface and time dependences of cantilever truss temperature. Based on the results of thermal design was obtained an estimate of the time interval during which it is advisable to supply water onto the melt surface to limit the thermal effect from the melt on the cantilever truss.
Keywords
simulation, radiation heat transfer, zonal method, melt, corium, core catcher, severe accident, VVER-1200
Article Text (PDF, in Russian)
References
- NP-001-15. Obshchiye polozheniya obespecheniya bezopasnosti atomnykh stantsiy [NP-001-15. General provisions for nuclear power plant safety assurance]. Moscow, Rostekhnadzor Publ., 2015. 74 p.
- Filippov A.S., Grigoryev S.Yu., Tarasov O.V. On the possible role of thermal radiation in containment thermal hydraulics experiments by the example of CFD analysis of TOSQAN T114 air-He test. Nuclear. Engineering and Design, 2016, vol. 310, pp. 175–186. DOI: 10.1016/j.nucengdes.2016.10.003.
- Filippov A., Strizhov V., Tarasov O. Molten Pool Models Validation and Cross-Verification: CFD and SOCRAT Code – 2009. 17th International Conference on Nuclear Engineering ICONE17. Brussels, Belgium, 2009. DOI: 10.1115/icone17-75205.
- Kamenskaya D.D., Tarasov O.V., Filippov A.S., Valetov D.K. Heat transfer by radiation and convection in the gas cavity of the VVER-1200 melt localization setup. Atomic Energy, 2018, vol. 125, issue 2, pp. 104–109.
- Howell J.R., Mengüc M.P., Siegel R. Thermal Radiation Heat Transfer, CRC Press, 2016, 1006 p.
- Melnikov I., Shmelkov G., Golubev M., Velikanov A., Shmelkov Y., Savekin S. Approaches to radiative heat transfer simulation in a cavity above melt. Proc. of the XXXIX Siberian Thermophysical Seminar. E3S Web of Conferences, 2023, vol. 459, p. 07011. DOI: 10.1051/e3sconf/202345907011.
- Programmnoye sredstvo GEFEST-ULR [Software GEFEST-ULR]. Software certification passport No. 446 dated 10.24.2018.
- Poljak G. Analysis of heat interchange by radiation between diffuse surfaces. Tech Phys USSR, 1935, vol. 1 (5–6), pp. 555–590.
- Hottel H.C., Sarofim A.F. Radiative Transfer. NY: McGraw-Hill Book Company, 1967. 52 p.
- Stasiek J.A. Application of the transfer configuration factors in radiation heat transfer. International Journal of Heat and Mass Transfer, 1998, vol. 41, pp. 2893–2907. DOI: 10.1016/S0017-9310(98)00024-6.
- Denison M.K., Webb B.W.J. A spectral line-based weighted-sum-ofgray-gases model for arbitrary RTE solvers. Journal of Heat Transfer, 1993, vol. 115, pp. 1004–1112. DOI: 10.1115/1.2911354.
- Modest M.F. The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer. Journal of Heat Transfer, 1991, vol. 113 (3), pp. 650–656. DOI: 10.1115/1.2910614.
- Lefebvre A.H. Flame radiation in gas turbine combustion chambers. International Journal of Heat and Mass Transfer, 1984, vol. 27, issue 9, pp. 1493–1510. DOI: 10.1016/0017-9310(84)90262-x.
- Rothman L.S., Gordon I.E., Barber R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V., Tashkun S.A., Tennyson J. HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, vol. 111, pp. 2139–2150. DOI: 10.1016/j.jqsrt.2010.05.001.
- Raschetnyy kod SOKRAT-V1/V2 [Code SOKRAT-B1/B2]. Software certification passport No. 564 dated 19.08.2022.
- Paloposki T., Liedquist L. Steel emissivity at high temperatures. Espoo: VTT Technical Research Centre of Finland, 2005. 86 p. Available at: https://publications.vtt.fi/pdf/tiedotteet/2005/T2299.pdf (accessed 21.10.2024).
- Fink J.K. Thermophysical properties of uranium dioxide. Journal of Nuclear Materials, 2000, vol. 279, pp. 1–18. DOI: 10.1016/S0022-3115(99)00273-1.
- GOST 19281-2014. Prokat povyshennoy prochnosti. Obshchiye tekhnicheskiye usloviya [GOST 19281-2014. High-strength rolled products. General specifications]. Introduced on 01.01.2015.
UDC 621.039.586
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 4, 4:17