EDN: EWRUVO
Authors & Affiliations
Alekseev P.A., Pyshko A.P., Ruzhnikov V.A., Ivanov A.S.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Alekseev P.A. – Senior Researcher, Cand. Sci. (Tech.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-70-00 (add 41-61); e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Pyshko A.P. – Head of Department, Cand. Sci. (Phys.-Math.).
Ruzhnikov V.A. – Candidate of Engineering Sciences, Leading Researcher. Cand. Sci. (Tech.).
Ivanov A.S. – Research Engineer.
Abstract
The article provides a brief description and results of calculations carried out using the modified version of the TFEDM22 calculation program. TFEDM22 is developed to evaluate the thermal and electro-physical characteristics (TEC) of the thermionic fuel element (TFE) reactor-converter. In addition to traditional heat transfer tasks, TFEDM22 implements heat transfer due to thermionic current, making this code unique.
The modification of TFEDM22 involved implementing the capability to use point-wise distribution of power release along the height of the TFE, directly obtained from neutron-physical calculations. In the unmodified TFEDM22 code, the distribution of power release along the height of the reactor is restored using a cosine function with the application of the kz value.
The necessity for this modification is driven by the use of means to equalize power release along the reactor's height, leading to significant deviations in the power release distribution shape from the cosine function shape.
The results of the comparative calculations show that using the cosine function to restore the power release distribution can overestimate the electric power values by 2 to 25 %.
This modification allowed the creation of an optimization code for selecting the lengths of termionic fuel element, integrating neutron-physical and thermal and electrophysical calculation programs with optimization algorithms. As an optimization method, a genetic algorithm was used, which has proven itself well in solving problems of optimizing the core and radiation shield of a thermionic nuclear power unit.
The calculations showed that the developed optimization code finds solutions that are no worse than the currently used method. Additionally, since the entire process is automated, the time required to find such a solution is reduced.
Keywords
thermoelectrophysical calculation, power release distribution shape, geometric optimization of TFE, genetic algorithm
Article Text (PDF, in Russian)
References
- Kulandin A.A., Timashev S.V., Atamasov V.D., Borzilov B.M., Gerasimenko P.V., Syrtsov L.A. Osnovy teorii, konstruktsii i ekspluatatsii kosmicheskikh YAEU [Fundamentals of the Theory of the Construction and Operation of Space Nuclear Power Systems]. Leningrad, Energoatomizdat Publ., 1987. 328 p.
- Ushakov B.A., Nikitin V.D., Emeliyanov I.Ya. Osnovy termoemissionnogo preobrazovaniya energii [Fundamentals of Thermionic Energy Conversion]. Moscow. Atomizdat Publ., 1974. 288 p.
- Kuznetsov V.A. Yadernye reactory kosmicheskih energeticheskih ustanovok [Nuclear reactors of space nuclear power unit]. Moscow, Atomizdat Publ., 1977. 240 p.
- Yarygin V.I., Ionkin V.I., Kuptsov G.A. et al. New-generation space thermionic nuclear power systems with out-of-core electricity generating systems. At Energy, 2000, vol. 89, issue 1, pp. 528–540. https://doi.org/10.1007/BF02673512.
- Ruzhnikov V.A., Dmitriyev V.M. Chislennyy metod sovmestnogo resheniya teplovoy i elektricheskoy zadach dlya termoemissionnogo EGK [Numerical method for joint solution of thermal and electrical problems for TFE]. FEI-774 — Preprint IPPE-774. Obninsk, FEI Publ., 1977. 19 p.
- Sinyavskiy V.V. Metody i sredstva eksperemental'nykh issledovaniy i reaktrnykh ispytaniy termoemissionnykh sborok [Methods and means of experimental research and reactor testing of thermionic assemblies]. Moscow, Energoatomizdat Publ., 2000. 375 p.
- Using GNU Fortran. Available at: https://gcc.gnu.org/onlinedocs/gfortran.pdf (accessed 20.01.2025).
- Ruzhnikov V.A., Alekseyev P.A. TFEDM22. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM [Certificate of state registration of the computer program]. No. 2022666305, 30.08.2022.
- Yarygin V.I., Rujnikov V.A., Sinayvskii V.V. Kosmicheskie i nazemnye yadernye energeticheskie ustanovki praymogogo preobrazovaniya energii [Space and planetary nuclear power unit with direct energy conversion.]. Moscow, NIYaU MIFI Publ., 2016. 364 p.
- Ruzhnikov V.A. Metody rascheta teplovykh i elektricheskikh kharakteristik sistem pryamogo preobrazovaniya energii. Ch. 1. Termoemissionnyy elektrogeneriruyushchiy kanal EGK: uchebnoye posobiye [Metods for calculating thermal and electrical characteristics of direct energy conversion systems. Part 1. Thermionic fuel element (TFE). Texbook]. Obninsk, FEI Publ. 2001. 25 p.
- Bartolomei G.G., Bat’ G.A., Baibakov V.D., Altuhov M.S. Osnovy teorii i metody raschyota yadernykh energeticheskikh reaktorov [Bases theory and methods for computation nuclear power reactor]. Moscow, Energoatomizdat Publ., 1989. 512 p.
- Dmitriyev V.M., Ruzhnikov V.A. Optimizatsiya geometricheskogo profilirovaniya v termoemissionnykh elektrogeneriruyushchikh kanalakh [Optimization o geometric profiling in thermionic fuel element]. Preprint FEI-704 – Preprint IPPE-704. Obninsk, IPPE Publ., 1976. 20 p.
- Gladkov L.A., Kureichik V.V., Kureichik B.M. Geneticheskie algoritmy [Genetic algorism]. Moscow, Fizmatlit Publ., 2010, 368 p.
- Alekseev P.A. Poisk optimal'noy skhemy raspolozheniya EGK v aktivnoy zone termoemissionnogo reaktora-preobrazovatelya kosmicheskogo naznacheniya [The search an optimal locations scheme for thermionic fuel elements in the core of space thermionic conversion reactor]. Izvestiya vuzov. Yadernaya energetika, 2011, no. 2, pp. 51–61.
- Alekseyev P.A., Krotov A.D., Kukharchuk O.F., Pyshko A.P., Yarygin V.I. Obzor programmnykh kompleksov i rezul'tatov raschetno-eksperimental'nykh issledovaniy i optimizatsii kharakteristik sistem s termoemissionnym preobrazovaniyem energii [Review of software solutions and results of computational and experimental studies and performance optimization of systems with thermionic energy conversion]. Kosmicheskaya tekhnika i tekhnologii – Space engineering and technology, 2020, no. 3 (30), pp. 114–128. DOI: 10.33950/spacetech-2308-7625-2020-3-114-128.
UDC 621.039.578:629.7
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:5