EDN: NFDLLV
Authors & Affiliations
Gonchar N.I., Dmitriev D.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Dmitriev D.V. – Junior Researcher. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-70-00 (add. 54-21); e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Gonchar N.I. – Leading Researcher, Cand. Sci. (Tech.).
Abstract
The reactor design must define safe operation limits for fuel element damage (their number and degree of damage), as well as the associated levels of radioactivity in the primary circuit working media, including the concentration of fission products.
NP-082-07 establishes safe operation limits (SOL) for fuel element damage in sodium-cooled fast neutron reactors relative to the number of fuel elements in the core: the maximum number of fuel elements with a gas leakage defect of no more than 0.1 %; fuel elements with direct contact of the fuel with the coolant – no more than 0.01 %. The main task of failed fuel detection systems (FFDS) is timely diagnostics of approaching the SOL.
The physical principle of FFDS operation is recording an increase in the activity of fission products in the primary circuit media when a through defect in the fuel element cladding appears and an increase in the content of delayed neutrons in the coolant in the event of significant cladding damage and the appearance of an open fuel surface. The rate of fission products (FP) entering the coolant and, accordingly, the activity of the environments directly depend on the number of leaky fuel elements, the degree of their damage and the type of fuel.
Spectrometry of the primary circuit protective gas of the BN reactor purified from aerosols allows us to detect the presence of leaky fuel elements by the growth of the activity of gaseous FPs (GFP). To estimate the number of damaged fuel elements with division by the type of defect, a calculation model is required that allows us to compare the GFP activity with the number of leaky fuel elements depending on the type of damage and verified using experimental data on an operating reactor. One of the important parameters of this model is the relative rate of coolant degassing, defined as the ratio of the rate of GFP exit from the coolant into the gas system to their content in the coolant.
The aim of the work is to estimate the relative rate of sodium coolant degassing based on the measured volumetric activity of radioactive argon (Ar-41) in the gas cavity of the reactor.
Keywords
failed fuel element detection, reactor plant, fast neutron reactor, sodium coolant, radiation levels in working areas, inert radioactive gases, relative degassing rate
Article Text (PDF, in Russian)
References
- NP-001-15. Federal'nyye normy i pravila v oblasti ispol'zovaniya atomnoy energii. Obshchiye polozheniya obespecheniya bezopasnosti atomnykh stantsiy [Federal norms and rules in the field of nuclear energy use. General provisions for ensuring the safety of nuclear power plants]. Moscow, Rostekhnadzor Publ., 2016. 75 p.
- Roslyakov V.F., Lisitsyn E.S., Guryev S.A., Zobnin N.A. Spektrometricheskaya sistema KGO reaktora BN-600 [The spectrometric system of the BN-600 reactor KGO]. Izvestiya vuzov. Yadernaya energetika, 2005, no. 1, pp. 13–17.
- Dedul A.V., Kalchenko V.V., Kolik M.V., Stepanov V.S., Pankratov D.V., Trykov L.A., Efremov Yu.V., Yakunin S.N., Gonchar N.I. Gamma-spektrometriya zashchitnogo gaza pervogo kontura RU s TZHMT kak sredstvo operativnogo kontrolya germetichnosti obolochek tvel i poverkhnosti teploobmena parogeneratora. [Gamma-spectrometry of the primary circuit protective gas of the reactor plant with heavy liquid metal coolant as a means of operational monitoring of the tightness of fuel element cladding and the heat exchange surface of the steam generator]. Voprosy atomnoy nauki i tekhniki. Ceriya: Obespecheniye bezopasnosti AES – Problems of Atomic Science and Technology. Series: Ensuring NPP Safety, 2009, issue 4, pp. 44–50.
- Dvornikov P.A., Kovtun S.N., Kudryaev A.A., Lukyanov D.A., Shutov S.S., Khryachko V.A., Albutova O.I., Boltunov A.N., Zverev I.D., Kerekesha A.V., Salyaev A.V., Staroverov A.I., Osipov S.L. Sovremennyye sistemy KGO perspektivnykh reaktorov na bystrykh neytronakh [Modern CGO systems promising fast neutron reactors]. Nauchno-informatsionnyy zhurnal po radiatsionnoy bezopasnosti “Apparatura i novosti radiatsionnykh izmereniy” – Scientific information journal on radiation safety “Equipment and news of radiation measurements”, 2017, no. 2 (89), pp. 2–11.
- Dragunova A.V., Morkin M.S., Perevezentsev V.V. Osobennosti metodov kontrolya germetichnosti obolochek tvelov reaktorov na bystrykh neytronakh so svintsovym teplonositelem [Features of methods for controlling the tightness of fuel element shells of fast neutron reactors with lead coolant]. Izvestiya vuzov. Yadernaya energetika, 2021, no. 3, pp. 84–93.
- Jagdish K. Tuli. Nuclear wallet cards. National nuclear data center. Brookhaven National Laboratory, Upton, New York, 2011.
- NP-082-07. Pravila yadernoy bezopasnosti reaktornykh ustanovok atomnykh stantsiy [Rules of nuclear safety of reactor installations of nuclear power plants]. Moscow, FBU “NTTS YARB” Publ., 2007. 35 p.
- PNAE G-019-89.Unifitsirovannaya metodika kontrolya osnovnykh materialov (polufabrikatov) svarnykh soyedineniy i naplavki oborudovaniya i truboprovodov AEU [Unified method of control of basic materials (semi-finished products) of welded joints and surfacing of NPP equipment and pipelines]. Moscow, Gosudarstvennyy komitet SSSR po nadzoru za bezopasnym vedeniyem rabot v atomnoy energetike Publ., 1990. 34 p.
- OST 95 10582-2003. Natriy reaktornoy chistoty dlya reaktorov BN. Tekhnicheskiye trebovaniya i metody kontrolya primesey [Reactor purity sodium for BN reactors. Technical requirements and methods for controlling impurities].
- Kozlov F.A., Zagorulko Yu.G., Bogdanovich N.G., Soloviev V.A., Zotov V.V., Starkov O.V., Kozub P.S., Kovalev Yu.P., Buchelnikov V.M., Kraev N.D. Rastvorimost' individual'nykh veshchestv v natrii [Solubility of individual substances in sodium]. Preprint FEI-510 – Preprint IPPE-510. Obninsk, 1974.
- Shpil'rain E.E., Skovorod'ko S.N., Mozgovoi A.G. New Data on the Solubility of Inert Gases in Liquid Alkali Metals at High Temperature. High Temperature, 2002, vol. 40, issue 6, pp. 825–831. DOI: https://doi.org/10.1023/A:1021417031177.
- BN-600. Available at: https://ru.wikipedia.org/wiki/БН-600https://ru.wikipedia.org/wiki/БН-600 (accessed 28.01.2025).
- Oshkanov N.N., Noskov Yu.V., Bakanov M.V., Leontiev N.P., Karpenko A.I. O sooruzhenii energobloka No. 4 Beloyarskoy AES s reaktorom BN-800 [On the construction of power unit No. 4 of the Beloyarsk NPP with the BN reactor-800]. Izvestiya vuzov. Yadernaya energetika, 2005, no. 1, pp.10–12.
- Kazansky Yu.A., Troyanov M.F., Matveev V.I., Evseev A.Ya., Zvonarev A.V., Kiryushin A.I., Vasiliev B.A., Belov S.P., Matveenko I.P., Kulabukhov Yu.S., Cherny V.A., Bakov A.T., Dvukhsherstnov V.G., Ivanov A.P., Tyutyunnikov P.L., Pshakin G.M. Issledovaniye fizicheskikh kharakteristik pri puske reaktora BN-600. Iz istorii rabot FEI po sozdaniyu bystrykh reaktorov. Sbornik izbrannykh nauchnykh rabot. K 80-letiyu dnya rozhdeniya M.F. Troyanova [Investigation of physical characteristics during the start-up of the BN-600 reactor. From the history of FEI's work on the creation of fast reactors. A collection of selected scientific papers. On the 80th anniversary of M.F. Troyanov's birth]. Obninsk, IPPE, 2011.
- Oshkanov N.N., Govorov P.P. Zhidkometallicheskiy reaktor BN-600 – osnovnyye osobennosti i opyt ekspluatatsii [Liquid metal reactor BN-600 – the main features and operational experience]. Izvestiya vuzov. Yadernaya energetika, 2009, no. 2, pp. 7–20.
- Energetika. TES i AES. Usloviya raboty tvelov reaktorov na bystrykh neytronakh i pred"yavlyayemyye k nim trebovaniya. [Energy. Thermal power plants and nuclear power plants. Operating conditions of fuel rods of fast neutron reactors and the requirements imposed on them]. Available at: https://tesiaes.ru/?p=13832 (accessed 28.01.2025).
- Dmitriev D.V., Gonchar N.I., Zhilkin A.S. Modelirovaniye vykhoda i raspredeleniya stabil'nykh gazoobraznykh produktov deleniya v germetichnom tvele konteynernogo tipa [Modeling of the yield and distribution of stable gaseous fission products in a sealed fuel rod of container type]. Voprosy atomnoy nauki i tekhniki. Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Nuclear and Reactor Constants, 2022, issue 2, pp. 53–58.
UDC 621.039.548
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:17