EDN: DOLPLS
Authors & Affiliations
Varfolomeeva V.A., Ivanov I.E., Andrianova O.N., Bychkov S.A., Grushin N.A.
All-Russian Research Institute for Nuclear Power Plants Operation, Moscow, Russia
Varfolomeeva V.A. – Engineer 1st Category. Contacts: 25, Ferganskaya st., Moscow, Russia, 109507. Tel.: +7 (499) 796-91-26; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Ivanov I.E. – Leading Researcher, Cand. Sci. (Phys.-Math.).
Andrianova O.N. – Chief Expert, Cand. Sci. (Techn.).
Bychkov S.A. – Chief Expert.
Grushin N.A. – Lead Engineer.
Abstract
MNT-CUDA, developed at VNIIAES JSC, is a high-precision engineering code for solving the neutron transport equation using the multi-group Monte Carlo method. Leveraging the parallel processing capabilities of graphic processing units (GPUs), MNT-CUDA significantly reduces calculation time compared to traditional CPU-based precision Monte Carlo codes. Furthermore, its detailed representation of system geometry and neutron transport processes enables higher accuracy compared to engineering codes relying on approximations. MNT-CUDA offers several ways to obtain neutron cross-sections, including MCU output files (65 groups), ACE format files (299 groups), and the CONSYST-RF program with the BNAB-RF library (299 groups), implemented as a dedicated module. Utilizing CONSYST-RF requires a priori estimation of the delta-scattering concentration to accurately account for heterogeneity effects. This paper presents a brief description of a novel methodology for determining this concentration. Alternatively, when using ACE format files generated by CONSYST-RF, heterogeneity effects are addressed using the integrated GETER module with automated delta-scattering concentration calculation and the implementation of fictional material shielding zones with automatically calculated dilution cross-sections. The paper benchmarks MNT-CUDA’s calculation results on various periodic lattices, including light water reactor (VVER type) cells and core configurations from the BFS facility. Discrepancies between group calculations using different cross-section sources are analyzed and compared with both high-fidelity calculations of precise codes and experimental data.
Keywords
MNT-CUDA program, GPU, Monte Carlo method, CONSYST-RF, MCU, resonance self-shielding, dilution cross-section, heterogeneity effects adjustment, neutron cross-sections, engineering calculations
Article Text (PDF, in Russian)
References
- Frank-Kamenetskii A.D. Modelirovaniye trayektoriy neytronov pri raschote reaktorov metodom Monte-Karlo [Simulation of neutron trajectories in the calculation of reactors by the Monte Carlo method]. Moscow, Atomizdat Publ., 1978. 96 p.
- MNT-CUDA (versiya 2.0). Software Tool Certification Passport No. 524 dated November 13, 2021.
- Ivanov I.E., Bychkov S.A., Grushin N.A., Varfolomeeva V.A., Druzhinin V.E. Innovacionnyj kompleks programm raschetov nejtronno-fizicheskih harakteristik reaktorov RBMK-1000 gruppovym metodom Monte-Karlo na graficheskih processorah [An innovative set of programs for calculating RBMK-1000 reactors neutron characteristics using the multi-group Monte Carlo method on GPUs]. Atomic Energy, 2023, vol. 135, no. 5–6, pp. 223–228.
- Varfolomeeva V.A., Grushin N.A., Ivanov I.E., Bychkov S.A. Verifikacionnye issledovaniya programmy MNT-CUDA na vodo-vodyanyh i bystryh sistemah [MNT-CUDA program verification research on light-water and fast-neutron systems]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernyh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2022, no. 5, pp. 75–84. Available at: http://nrcki.ru/files/VANT-5-2022_obl2.pdf (accessed 02.04.2025).
- MCU project. Available at: https://mcuproject.ru (accessed 02.04.2025).
- CONSYST-RF. Computer Program State Registration Сertificate No. 2016612865 dated 2016.
- BNAB-RF. Database State Registration Certificate No. 2016620461 dated 2016.
- Andrianova O.N., Golovko Yu.E., Rozhihin E.V., Yakunin A.A. Verifikaciya biblioteki konstant BNAB-RF na model'nyh zadachah i special'no otobrannyh benchmark-eksperimentah [Verification of the ABBN-RF Neutron Constant Library using Sample Tasks and Specially Selected Benchmark Experiments]. Yadernaya Fizika I Inzhiniring – Nuclear Physics and Engineering, 2012, vol. 3, no. 2, pp. 120–126.
- Ivanov I.E. et al. Uchet geterogennyh effektov pri podgotovke mnogogruppovyh konstant dlya raschetov reaktorov metodom Monte Сarlo po programme MNT-CUDA [Heterogeneity effects adjustment for multi-group neutron cross-sections preparation for calculating reactors using MNT-CUDA program with Monte Carlo method applied]. Dep. in “All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences” 11.11.2024 № 40-B2024, 42 p.
- Dollezhal N.A., Emel'yanov I.Ya. Kanal'nyj yadernyj energeticheskij reaktor [Channel-type Nuclear Power Reactor]. Moscow, Energoizdat Publ. 1980, 208 p.
- Pavlovichev A.M. et al. Core Benchmarks Description. General Order Report 85B-99398V: RRC “Kurchatov Institute”. Moscow, 2000.
- K-infinity Experiments for 238U in Fast Neutron Spectra: Measurements with Enriched Uranium or Plutonium Mixed with Depleted Uranium (BFS-35, BFS-33, BFS-38, BFS-31, and BFS-42 assemblies). NEA/NSC/DOC(95)03/VI. VI, MIX-MISC-FAST-001.
- MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview and Theory, LA-UR-03-1987. Los Alamos, US, 2008. 416 p.
- The Programmers Solid 3D CAD Modeller. Available at: https://openscad.org/ (accessed 02.04.2025).
- ROSFOND – ROSsiyskaya biblioteka Faylov Otsenennykh Neytronnykh Dannykh [ROSFOND – Russian Library of Evaluated Nuclear Data Files]. Available at: https://www.ippe.ru/reactors/reactor-constants-datacenter/rosfond-neutron-database (accessed 02.04.2025).
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 2, 2:4