EDN: EQWMSW
Authors & Affiliations
Belousov V.I., Gomin E.A., Gurevich M.I., Davidenko V.D., Dudkin K.O., Dyachkov I.I., Ioannisian M.V., Malkov M.R., Pisarev A.N., Chernov K.G.
National Research Center “Kurchatov Institute”, Moscow, Russia
Belousov V.I. – Head of the Laboratory, Cand. Sci. (Phys.-Math.). Сontacts: 1, pl. Akademika Kurchatova, Moscow, 123182. Tel.: +7 (985) 982-82-14, +7 (499) 196-98-20; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Gomin E.A. – Leading Expert.
Gurevich M.I. – Chief Researcher, Dr. Sci. (Phys.-Math.).
Davidenko V.D. – Head of Department, Dr. Sci. (Tech.).
Dudkin K.O. – Laboratory Research Assistant.
Dyachkov I.I. – Senior Researcher, Cand. Sci. (Tech.).
Ioannisian M.V. – Head of the Laboratory, Cand. Sci. (Phys.-Math.).
Malkov M.R. – Senior Researcher, Cand. Sci. (Phys.-Math.).
Pisarev A.N. – Senior Researcher.
Chernov K.G. – Senior Researcher.
Abstract
The paper discusses the KIR software package (version C) designed to study neutron-physical stationary and non-stationary processes based on the Monte Carlo method in average three-dimensional geometry in atmospheric and inhomogeneous media. Calculation of the implementation of non-stationary processes based on approximate methods and the direct Monte Carlo method taking into account delayed neutrons. The latter carried out precision calculations of neutron kinetics without any approximations, which allows conducting studies in time, energy and space, and the neutron history is modeled based on files evaluated by nuclear data taken from the relevant international libraries. The software package corrects the scope of application of the Monte Carlo method in the design implementation and can be used in the problems of studying fast transient processes during normal operation and in emergency modes of reactor operation caused by movements of control bodies or changes in the coolant density in individual areas of the reactor and other NPIs. In addition, the complex can be used to create mathematical standards for verification of engineering and other programs.
The paper provides a brief description of the KIR-C complex, its main capabilities and design features. A brief description of the program module and input and output data display tool “KIR-C Visualizer” is provided. The efficiency of this was demonstrated by a demonstration calculation of a WWER-1000 fuel element, performed together with the OpenFOAM CFD code. Examples of solutions of stationary and non-stationary problems are also given, demonstrating a wide range of possibilities for using this software package, including the use of continuous functions defining a single light material.
Keywords
neutron transfer equation, Monte Carlo method, precision calculations, neutron-physical codes,
KIR-C program, KIR-C architecture, estimated nuclear data, neutron-physical calculations, nuclear reactors, neutron kinetics, non-stationary calculation, mathematical benchmarks
Article Text (PDF, in Russian)
References
- Davidenko V.D., Zinchenko A.S., Kharchenko I.K. Integral'nyye nestatsionarnyye uravneniya perenosa neytronov dlya raschotov kinetiki yadernykh reaktorov metodom Monte-Karlo [Integral non-stationary neutron transport equations for calculating the kinetics of nuclear reactors using the Monte Carlo method]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2015, issue 1, pp. 11–16.
- Gomin E.A., Davidenko V.D., Zinchenko A.S., Kharchenko I.K. Raschot funktsii tsennosti i effektivnoy doli zapazdyvayushchikh neytronov metodom Monte-Karlo [Calculating the value function and effective fraction of delayed neutrons using the Monte Carlo method]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2016, issue 3, pp. 22–30.
- Gomin E.A., Davidenko V.D., Zinchenko A.S., Kharchenko I.K. K opredeleniyu vremeni zhizni mgnovennykh neytronov deleniya metodom Monte-Karlo [On determining the lifetime of prompt fission neutrons using the Monte Carlo method]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – ProblemsofAtomicScienceandTechnology. Series: Physics of Nuclear Reactors, 2016, issue 3, pp. 16–21.
- Gomin E.A., Davidenko V.D., Zinchenko A.S., Kharchenko I.K. Modelirovaniye kinetiki yadernogo reaktora metodom Monte-Karlo [Modeling the Kinetics of a Nuclear Reactor by the Monte Carlo Method]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2016, issue 5, pp. 4–16.
- Bell G., Glasstone S. Nuclear Reactor Theory. New York, Van Nostrand Reinhold Company, 1970. 637 с.
- Mikhailov G.A., Medvedev I.N. Optimizatsiya vesovykh algoritmov statisticheskogo modelirovaniya [Optimization of Weight Algorithms for Statistical Modeling]. Novosibirsk, Omega Print Publ, 2011. 304 p.
- Leppänen Jaakko, Pusa Maria, Viitanen Tuomas, Valtavirta Ville, Kaltiaisenaho Toni. The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy, 2015, vol. 82, pp. 142–150. DOI: 10.1016/j.anucene.2014.08.024.
- Sjenitzer B.L. The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors. Delft: TUDelf, 2013. 178 p.
- Ioannisian M.V. Opredeleniye potoka neytronov na osnove metoda mnogotochechnoy kinetiki [Determination of Neutron Flux Based on the Multipoint Kinetics Method]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2018, issue 1, pp. 10–23.
- The HDF5® Library & File Format. Доступно на: https://www.hdfgroup.org/solutions/hdf5/ (дата обращения 13.04.2025).
- Gurevich M.I., Pryanichnikov A.V. Algorithms of NCG geometrical module. Physics of Atomic Nuclei, 2012, vol. 75(14), pp. 1661–1668.
- Brown F.B., Booth T.E. et al. MCNP – a General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, LANL, 2003.
- Leppänen J., Aufiero M., Fridman E., Rachamin R., Marck S. Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code. Annals of Nuclear Energy, 2014, vol. 65, pp. 272–279.
- Conlin J.N. A Compact ENDF (ACE) Format Specification. Report LA UR-19-29016, Los Alamos National Laboratory, 2021.
- Koshcheev V.N., Peregudov A.A., Rozhikhin E.V., Semenov M.Yu., Yakunin A.A. Ispol'zovaniye metodiki temperaturno-proportsional'nykh kontsentratsiy dlya raschota modeley bystrykh reaktornykh ustanovok [Using the temperature-proportional concentration method to calculate fast reactor plant models]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of atomic science and technology. Series: Nuclear reactor constants, 2019, issue 2, pp. 68–76.
- Mattes M., Keinert J. Thermal Neutron Scattering Data for the Moderator Materials H2O, D2O, and ZrHx in ENDF-6 Format and as ACE Library for MCNP(X) Codes. Report INDC (NDS)-0470. Vienna: IAEA, April 2005.
- Chadwick M.B., Obložinský P., Herman M., Greene N.M. et al. ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets, 2006, vol. 107, p. 2931.
- Nikolaev M.N. ROSFOND – rossiyskaya natsional'naya biblioteka otsenonnykh neytronnykh dannykh [ROSFOND – Russian National Library of Evaluated Neutron Data]. V mire nauki – In the World of Science, 2006, no. 9, pp. 78–81.
- Zabrodskaya S.V., Ignatyuk A.V., Koshcheyev V.N., Manokhin V.N., Nikolaev M.N., Pronyaev V.G. ROSFOND – rossiyskaya natsional'naya biblioteka otsenonnykh neytronnykh dannykh [ROSFOND – Russian National Library of Evaluated Neutron Data]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 2007, no. 1–2, pp. 3–21.
- ROSFOND – ROSsiyskaya biblioteka Faylov Otsenonnykh Neytronnykh Dannykh [ROSFOND – Russian National Library of Evaluated Neutron Data]. Available at: https://www.ippe.ru/reactors/reactor-constants-datacenter/rosfond-neutron-database (accessed 13.04.2025).
- Brown D.A., Chadwick M.B., Capote R., Kahler A.C. et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nuclear Data Sheets, 2018, vol. 148, pp. 1–142.
- The Joint Evaluated Fission and Fusion File (JEFF, NEA). Доступно на: https://www.oecd-nea.org/jcms/pl_20182/jeff (дата обращения 13.04.2025).
- Nakagawa T., Shibata K., Chiba S., Fukahori T., Nakajima Y., Kikuchi Y., Kawano T., Kanda Y., Ohsawa T., Matsunobu H., Kawai M., Zukeran A., Watanabe T., Igarasi S., Kosako K., T. Asami. Japanese evaluated nuclear data library. Version 3. Revision-2: JENDL-3.2. J. Nucl. Sci. Technol., 1995, vol. 32, p. 1259.
- MacFarlane R.E., Muir D.W., Boicourt R.M, Kahler A.C. The NJOY Nuclear Data Processing System, Version 2012. Theoretical Division Los Alamos National Laboratory. LA-UR-12-27079, 2012.
- Sinitsa V.V. Paket protsessingovykh programm GRUCON-D, versiya 2019-12 [GRUCON-D processing software package, version 2019-12]. State Registration Certificate No. 2014663246. Available at: https://www-nds.iaea.org/grucon/ (accessed 13.04.2025).
- Beloussov V.I., Gurevich M.I., Davidenko V.D., Ioannisian M.V., Raskach K.F. Razrabotka i realizatsiya v programme KIR-S metoda uchota nepreryvnosti raspredeleniya plotnosti materialov [Development and implementation in the KIR-S program of a method for accounting for the continuity of the density distribution of materials]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2024, issue 1, pp. 11–18.
- Beloussov N.I., Davidenko V.D., Tsibulsky V.F. Programma UNK dlya detal'nogo raschota spektra v yacheyke yadernogo reaktora [UNK program for detailed calculation of the spectrum in a nuclear reactor cell]. Preprint IAE-6083/4. Moscow, 1998.
- Davidenko V.D., Tsibulsky V.F. Detailed calculation of neutron spectrum in cell of a nuclear reactor. Proc.of the Intern. Conf. on the Physics of Nuclear Science and Technology. Long Island, New York, USA, Oct. 5–8, 1998, pp. 1755–1760.
- Davidenko V.D. Razrabotka determinirovannykh modeley povyshennoy tochnosti i programmnykh kompleksov dlya pryamogo modelirovaniya fizicheskikh protsessov v yadernykh reaktorakh. Diss. dokt. tekhn. nauk [Development of high-accuracy deterministic models and software complexes for direct simulation of physical processes in nuclear reactors. Dr. tech. sci. diss]. Moscow, National Research Centre “Kurchatov Institute”, 2017.
- Beloussov V.I., Gurevich M.I., Davidenko V.D., Ioannisian M.V., Raskach K.F., Chernov K.G. Modifikatsiya algoritma Frank-Kamenetskogo dlya parallel'nykh vychisleniy [Modification of the Frank-Kamenetsky algorithm for parallel computing]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2024, issue 2, pp. 25–37.
- Beloussov V.I., Gomin E.A., Davidenko V.D., Dyachkov I.I., Ioannisian M.V., Raskach K.F., Pisarev A.N. Algoritmy raschota effektivnykh parametrov uravneniya tochechnoy kinetiki na osnove metoda Monte-Karlo, ikh verifikatsiya i validatsiya [Algorithms for calculating the effective parameters of the point kinetics equation based on the Monte Carlo method, their verification and validation]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2024, issue 1, pp. 9–31.
- Ioannisian M.V., Gomin E.A., Davidenko V.D., Dyachkov I.I. O modelirovanii nachal'nogo istochnika mgnovennykh neytronov dlya resheniya nestatsionarnykh zadach metodom Monte-Karlo [On modeling the initial source of prompt neutrons for solving non-stationary problems using the Monte Carlo method]. Doklad na nauchno-tekhnicheskoy konferentsii “Neytronno-fizicheskiye problemy atomnoy energetiki” [Report at the scientific and technical conference “Neutron-physical problems of nuclear power engineering”]. Obninsk, November 27–29, 2019. Available at: https://www.ippe.ru/images/ science_info/conference/neutron2019/presentation/section5/Ioannisian-Monte-Carlo-modeling-initial-prompt-neutron-source.pdf (accessed 13.04.2025).
- Moukalled F., Mangani L., Darwish M. The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM® and Matlab®. Springer, 2015. DOI: https://doi.org/10.1007/978-3-319-16874-6.
- OpenFOAM and the OpenFOAM Foundation. Доступно на: https://openfoam.org/ (дата обращения 13.04.2025).
- Belousov V.I., Davidenko V.D., Dyachkov I.I. et al. KIR-TG code for interconnected thermo-hydraulic and neutron-physical test calculations of VVER-SKD reactors. At Energy, 2023, vol. 134, issue 5–6, pp. 305–311. DOI: https://doi.org/10.1007/s10512-024-01059-x.
- Chaudat J.P., Darrouzet M., Fisher E.A. Experiment in Pure Uranium Lattices with Unit K∞. Assemblies: SNEAK818Z, UK1 and UK5 in ERMINE and HARMONIE. Preprint KFK-1865 (CEA-R-4552). Karlsruhe: Institut für Angewandte Systemtechnik und Reaktorphysik, 1974. DOI: 10.5445/IR/270007511.
- Gomin E.A., Davidenko V.D., Shirokov R.V. Testirovaniye programmy KIR-S na kriticheskikh eksperimentakh s rastvornym toplivom [A Program Complex KIR Verification on Critical Experiments With Solution Assemblies]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, issue 4, pp. 26–32.
- International Criticality Safety Benchmark Evaluation Project (ICSBEP). Доступно на: https://www.oecd-nea.org/jcms/pl_24498/international-criticality-safety-benchmark-evaluation-project-icsbep (дата обращения 13.04.2025).
- NEA (2019). IRPhe Handbook 2017. International Reactor Physics Evaluation Project Handbook (database). NEA, 2019. Доступно на: https://doi.org/10.1787/fa47762a-en (дата обращения 13.04.2025).
- Dugone J. Spert III Reactor Facility: E-Core Revision. U.S. Atomic Energy Commission, 1965.
- Alex Levinsky, Ville Valtavirta, Frederick P. Adams, Vinicius N.P. Anghel. Modeling of the SPERT transients using Serpent 2 with time-dependent capabilities. Annals of Nuclear Energy, 2019, vol. 125, pp. 80–98.
- Belousov V.I., Dyachkov I.I., Ioannisian M.V., Pisarev A.N. Modelirovaniye neytronnoy kinetiki v aktivnoy zone reaktora SPERT III v programme KIR [Modeling of neutron kinetics in the SPERT III reactor core in the KIR program]. Doklad na nauchno-tekhnicheskoy konferentsii “Neytronno-fizicheskiye problemy atomnoy energetiki (Neytronika-24)” [Report at the scientific and technical conference “Neutron-physical problems of nuclear power engineering (Neutronics-24)”]. Obninsk, May 8–31, 2024. Available at: https://www.ippe.ru/images/science_info/conference/neutron2024/presentation/s7-15.pdf (accessed 13.04.2025).
- Belousov V.I., Boyarinov V.F., Davidenko V.D., Dyachkov I.I., Ioannisian M.V., Chernov K.G. Rezul'taty raschotov kineticheskogo benchmarka C5G7 TD metodom Monte-Karlo [Results of Calculations of the Kinetic Benchmark C5G7-TD by the Monte Carlo Method]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2023, issue 3, pp. 18–32.
- Boyarinov V.F., Davidenko V.D., Moryakov A.V. Transportnyy variant nestatsionarnogo diffuzionnogo testa BSS-6 [Not Stationary BSS-6 Diffusion Test in Transport Interpretation]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, issue 2, pp. 49–63.
UDC 621.039.51.17, 539.125.523.4
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 2, 2:6