Alekseev P.A., Ekhlakov I.A., Ovcharenko M.K., Pyshko A.P.
A.I. Leypunsky Institute for Physics and Power, Obninsk, Russia
One of the problems related to designing space nuclear power systems consists in ensuring safe reactor start-up in space. The process of the reactor start-up becomes more complicated because it is impossible to keep track of the reactor power variations at its initial stage with the conventional means of control. To solve this problem, an external neutron source is used; it provides the controllable level of reactor power in the course of its start-up.
The use of external neutron source is related to certain problems as well. Firstly, additional structural elements, the source holder, feedthroughs to the core and other components are required, thus increasing the mass and reducing the reliability of the nuclear power system (SNPS). Secondly, before being placed in the launcher the SNPS is subjected to numerous prior operations. The personnel, who perform this work in the immediate vicinity to a powerful neutron source (~106 n/s), will be subject to radiation exposure.
Earlier in publication it was shown that cosmic ray protons cause the ingress of 105-107 n/s to the core of the upgraded thermionic reactor-converter (TRC) of the “TOPAZ” type, i.e. the amount of neutrons capable of inducing the number of fission events sufficient to ensure the controllable power level.
Getting onto the SNPS surface, streams of cosmic ray protons significantly depend on the height and geographic coordinates of the spacecraft position relative to the Earth. Due to non-uniformity of proton streams, we should expect non-uniformity of neutron flux that will be entering the reactor core in the course of spacecraft orbital flight. In this case the reactor start-up should be performed in the time periods when the spacecraft is going through the areas with the highest values of neutron fluxes.
This paper considers the possibility to start-up the modified thermionic reactor-converter without any special neutron source but with consideration of the effect of cosmic ray protons and uncertainty of their streams in the course of changing the spacecraft position relative to the Earth.
1. Pupko V.Ya., Makarenkov Yu.D., Marin S.N. et al. Issledovanie nekotorykh vozmozhnykh avarij pri puskovykh rezhimakh kosmicheskoj YaYeU [Studies of Possible Accidents under Conditions of Space NPS Start-up]. Voprosy atomnoy nauki i tekhniki. Ser. Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors. 1995, no.4, pp. 77–81.
2. Artyuhov G.Ya., Astaf'ev V.V, Zelencov S.N. Podgotovka datchikov moshhnosti dlya avtomaticheskogo puska reaktora «TOPAZ» [Preparation of Power Transducers for Automatic Start-up of the “TOPAZ” Reactor]. Trudy otraslevoj yubilejnoj konferencii «Yadernaya energetika v kosmose» [Proc. of the Branch Yubilee Conference “Nuclear Power in Space”]. Obninsk, 1990, pp. 354-356.
3. Volkov Yu.V., Makarenkov Yu.D., Matkov A.G. Ocenka vozmozhnosti bezavarijnogo puska kosmicheskoj YaYeU bez puskovogo istochnika nejtronov [Evaluation of the Possibility of an Accident-Free SNPS Start-up without Any Start-up Neutron Source]. Voprosy atomnoy nauki i tekhniki. Ser. Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors. 1995, no.4, pp. 33–36.
4. Johnson R.A., Morgan W.T., Roclin S.R. Design, ground test and flight test of SNAP 10A, first reactor in space. Nuclear engineering and design. 1967, no.5, pp. 7–21.
5. Petrova B.N. Osnovy avtomaticheskogo upravleniya yadernymi kosmicheskimi energeticheskimi ustanovkami [Fundamentals of Automatic Control of Space Nuclear Power Systems]. Moscow, Mashinostroenie Publ., 1974. 380 p.
6. Alekseev P.A., Ekhlakov I.A. Issledovanie vliyaniya kosmicheskogo izlucheniya na formirovanie vneshnego istochnika nejtronov v KYaYeU [Studies of Space Radiation Effect on the Formation of External Neutron Source in the SNPS]. Trudy 11 nauchno-tehnicheskoj konferencii «Molodezh' v nauke» [Proc. 11th Sci. Tech. Conf. “Youth in Science”]. Sarov, 2012, 7 p.
7. Yarygin V.I. Termoelektrichestvo i termoemissiya v kosmicheskikh yadernykh energeticheskikh ustanovkakh pryamogo preobrazovaniya. Sovremennoe sostoyanie i perspektivy [Themo-electricity and Thermionics in Direct-Conversion Space Nuclear Power Systems. Current Status and Prospects]. Trudy nauch. konf. "Yadernaya energetika v kosmose-2005" [Proc. sci. conf. "Nuclear Power in Space-2005"]. Podol'sk, FGUP NIKIJeT Publ., 2005.
8. Kuznecov V.A., Gryaznov G.M., Artyukhov G.Y et al. Razrabotka i sozdanie termoemissionnoj yaderno-energeticheskoj ustanovki «Topaz» [Development and Creation of Thermionic Nuclear Power System “Topaz”]. Atomnaya energiya - Atomic Energy. 1974, no.6, pp. 450–456.
9. Bogush I.P., Gryaznov G.M., Zhabotinskij E.E. et al. Kosmicheskaya termoemissionnaya YaYeU po programme «TOPAZ». Principy konstrukcii i rezhimy raboty [Space Thermionic NPS for the “Topaz” Program. Design Principles and Modes of Operation]. Atomnaya energiya - Atomic Energy. 1991, no.4, pp. 211-214.
10. Gryaznov G.M., Pupko V.Ya. «TOPAZ-1» Sovetskaya kosmicheskaya yaderno-energeticheskaya ustanovka [“TOPAZ-1” as a Soviet Space Nuclear Power System]. Priroda - Nature. 1991, no.10, pp. 29-36.
11. Ramki obespecheniya bezopasnogo ispol'zovaniya yadernykh istochnikov energii v kosmicheskom prostranstve: sovremennye i planiruemye primeneniya i vyzovy. Soderzhanie sovmestnogo vystupleniya predstavitelej Roskosmosa i Goskorporacii "Rosatom" na seminare Nauchno-tehnicheskogo podkomiteta Komiteta OON po kosmosu. [The Framework of Ensuring the Safe Use of Nuclear Power Sources in Space: Current and Planned Applications and Challenges. The Contents of Joint Presentation of the Representatives of Roscosmos and State Corporation “Rosatom” at the Workshop of the UN Scientific and Technical Commission Subcommittee on Space]. Available at:
http://www.oosa.unvienna.org/pdf/limited/c1/AC105_C1_2012_CRP06R.pdf (date 25.06.2013)
12. Available at: http://www.spenvis.oma.be/spenvis/ (date 24.06.2013)
13. Denise B. Pelowitz. MCNPX User’s ManualVersion 2.6.0, April 2008 LA-CP-07-1473
14. ENDF/B-VI Data for MCNP TM. LA-12891-M, 1994.
15. Kudryavcev E.M. Mathcad 11: Polnoe rukovodstvo po russkoj versii [Mathcad 11: Full Russian Version Manual]. Moscow, DMK Press Publ., 2005. 592p.