Bondarenko A.I., Savin M.M., Supotnitskaya O.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
An available classification of sodium fires inside the compartments of Nuclear Power Plants with sodium-cooled fast reactors is described briefly. The main features of the known physico-mathematical models of sodium burning are considered. A system of equations for estimating the temperatures of air and steel siding of compartment inner surfaces at sodium fire in the separated NPP compartment is proposed. The presented system of equations contains minimum of phenomenological parameters.
1. Bakuta N.N. Raschetnoe obosnovanie bezopasnosti AES s bystrym reaktorom pri techakh natrievogo teplonositelya. Diss. cand. tech. nauk [Computational justification of the safety of a nuclear power plant with a fast reactor in the course of sodium coolant flows. Cand. tech. sci. diss.]. Obninsk, 1999.
2. Manzini G., Parozzi F., Polidoro F. Fast reactor nuclear power plant safety. A review of sodium release fire scenarios. Proc. 6th Int. eminar on fire and explosion hazards. University of Leeds, UK, 2010.
3. Olivier T.J., Radel R.F., Nowlen S.P.,.Blanchat T.K, Hewson J.C. Metal Fire Implications for Advanced Reactors, Part 1: Literature Review. Sandia report SAND2007-6332. Unlimited Release. October 2007.
4. Ivanenko B.H., Kapdash D.Yu. Cpavnitel'nyy analiz opasnostey obychnogo i natrievogo pozhara na AES s bystrym reaktorom (IAEA-SM-345/36) [A careful analysis of the dangers of conventional and sodium fire at a nuclear power plant with a fast reactor (IAEA-SM-345/36)]. Proc. Int. Symposium "Upgrading of fire safety in nuclear power plants". Vienna, 1997, pp. 127-136.
5. Vinogradov A.V., Bagdasarov Yu.E., Kamaev A.A., Poplavskiy V.M., Drobyshev A.V., Kryuchkov E.A., Kochetkov L.N., Pakhomov I.A. Raschetno-eksperimental'nye issledovaniya v obosnovanie pozharnoy bezopasnosti. Osnovnye polozheniya obespecheniya pozharnoy (natrievoy) bezopasnosti energobloka [Calculation-experimental studies in support of fire safety. The main provisions for ensuring the fire (sodium) safety of the power unit]. Obninsk, 2015.
6. Miyake O., Miyahara S., Ohno S., Himeno Y. Sodium Pool Combustion Codes for Evaluation of Fast Breeder Reactor Safety. Journal of Nuclear Science and Technology, 1991, vol. 28, no. 2, pp. 107-121.
7. Sathiah P., Roelofs F. Numerical modeling of sodium fire. Part II: Pool combustion and combined spray and pool combustion. Nuclear Engineering and Design, 2014, vol. 278, pp. 739-752.
8. Subramani A., Jayanti S. Equilibrium considerations in aerosol formation during sodium combustion. Nuclear Engineering and Design, 2008, vol. 238, pp. 2739–2745.
9. Kuznetsov I.A., Poplavskiy V.M. Bezopasnost' AES s reaktorami na bystrykh neytronakh [Safety of nuclear power plants with fast neutron reactors]. Moscow, IzdAT Publ., 2012.
10. Gorelkin A.A., Gubin A.M. Pervonachal'naya podgotovka pozharnykh, pozharnaya taktika [Initial training of firefighters, fire tactics]. Barnaul, Training Center of the State Fire Service of the Altai Territory, 2002.
11. Tsai S.S. The NACOM Code for Analysis of Postulated Sodium Spray Fires in LMFBRs, NUREG/CR-1405. Upton, NY, Brookhaven National Laboratory, 1980.
12. Freudenstein K.F. Effects of Sodium Fires on Structures and Materials. Practical Experience with Sodium Leakage Accidents. IAEA international working group fast reactors specialists' meeting. Sodium fires. Obninsk, 1988.
13. Kumar A., Ramana M.V. Compromising Safety: Design Choices and Severe Accident Possibilities in India's Prototype Fast Breeder Reactor. Science and Global Security, 2008, vol. 16, pp. 87-114.
14. Newman R.N. The ignition and burning behaviour of sodium metal in air. Progress in Nuclear Energy, 1983, vol. 12, no. 2, pp. 119-147.
15. Beiriger P. et.al. SOFIRE II User Report, AI-AEC-13055, Atomics International Division. Canoga Park, California 1973.
16. Ohno S., Uchiyama N., Kawata K., Miyake O. Sodium Columnar Fire Test and Code Development at PNC. Available at: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/044/31044849.pdf (accessed 25.10.2017).
17. Seino H., Miyahara S., Miyake O., Tanabe H. Sodium fire tests for investigating the sodium leak in Monju. Available at: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/044/31044842.pdf (accessed 25.10.2017).
18. Bae J.H., Ahn D.H., Kim Y.C., Cho M. An Experimental Study on the Characteristics of Sodium Fires. Journal of the Korean Nuclear Society, 1994, vol. 26, no. 4.
19. Manohar C.S. Curriculum Vitae. Available at: Civil.iisc.ernet.in/~manohar/fire/part-12_notes-5.pdf (accessed 25.10.2017).
20. Salzberg C., Tokita H. The Monju nuclear reactor leak. Available at: www.wikileaks.org/wiki/The_Monju_nuclear_reactor_leak (accessed 25.10.2017).
21. Artem'ev S.R., Shaporev V.P., Dvoretskiy D.S. Issledovanie protsessa goreniya raspylennogo natriya v reaktore (zamknutom ob"eme). Integrirovannye tekhnologii i energosberezhenie [Investigation of the combustion of sputtered sodium in a reactor (a closed volume). Integrated technologies and energy saving]. Kharkov: NTU "KhPI", 2007.
22. Tsai S.S. State of the art review of sodium fire analysis and current notions for improvements. Available at: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/011/33011363.pdf (accessed 25.10.2017).
23. Sagava N., Sakaguchi S., Suzuoki A., Akagane K., Mochizuki M. Energy release from sodium spray combustion. IAEA – IWGFR Specialists Meeting On Sodium Fires and Prevention. Cadarache, France, 1978.
24. Yamaguchi A., Tajima Y. Numerical Simulation of Non-Premixed Diffusion Flame and Reaction Product Aerosol Behaviour in Liquid Metal Pool Combustion. Journal of Nuclear Science and Technology, 2003, vol. 40, no. 2, pp. 93-103.
25. Steinhaus T., Welch S., Carvel R., Torero J.L. Large-scale pool fires. Thermal Science, 2007, vol. 11, no. 3.
26. Mangarjuna Rao P., Raghavan V., Velusamy K., Sundararajan T. U.S.P. Shet. Modeling of quasi-steady sodium droplet combustion in convective environment. International Journal of Heat and Mass Transfer, 2012, vol. 55, pp. 734–743.
27. Murata K. et al. CONTAIN LMR/1B-Mod.1, A Computer Code for Containment Analysis of Accidents in Liquid-Metal Cooled Nuclear Reactors, SAND91-1490. Albuquerque, New Mexico, Sandia National Laboratories, 1993.
28. Okano Y., Yamaguchi A. Numerical simulation of a free-falling liquid sodium droplet combustion. Annals of Nuclear Energy, 2003, vol. 30, pp. 1863–1878.
29. Humphries L.L., Louie D.L.Y. MELCOR/CONTAIN LMR Implementation Report – FY14 Progress. Sandia report SAND2014-19183. Albuquerque, New Mexico, Sandia National Laboratories, 2014.
30. Jordan S., Cherdron W., Malet J.-C., Rzekiecki R., Himeno Y. Sodium Aerosol Behavior in Liquid-Metal Fast Breeder Reactor Containments. Nuclear Technology, 1988, vol. 81, no. 2, pp. 183-192
31. Lee Y.B., Choi S.K. A Study on the Development of Advanced Model to Predict the Sodium Pool Fire. Journal of the Korean Nuclear Society, 1997, vol. 29, no. 3, pp. 240-250.
32. Bukhmirov V.V. Teplomassoobmen [Heat and mass transfer]. Ivanovo, FGBOUVPO "Ivanovo State Power Engineering University named after V.I. Lenin", 2014. 360 p.
33. Greber G., Erk S., Grigull' U. Osnovy ucheniya o teploobmene [Fundamentals of the theory of heat exchange]. Moscow, Inostrannaya Literatura Publ., 1958. 566 p.