Glebov A.P.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
In the development of nuclear energy in Russia and the world can be divided into three stages, separated by large accidents at nuclear power plants, "Three Mile island" (USA, 1979), Chernobyl (Soviet Ukraine, 1986), the nuclear power plant "Fokusima-1" (Japan,2011).
The share of world electricity production at NPPs fell from 17.6% (1995) to 10.7% (2015). To improve the competitiveness of nuclear power plants required a significant increase in the level of safety while simplifying and reducing the cost of projects. As a result, water-cooled reactors of "Generation -3+"were developed and are already being built. These are Westinghouse reactors (USA) AR-1000, ARR-1400 (Korea), boiling water-General Electric (USA) ESBWR-1650, Areva (France) EPR (1600 MW), Rosatom - NPP-2006 (1200 MW) and VVER-TOI (1250 MW) in Russia. The paper presents the results of comparing the economic efficiency of these projects.
In January 2000, at the initiative of the us Department of energy, the Generation IV international forum (MFP-4) program was launched. The objectives of this program was to identify the main areas of R&d for the development of promising nuclear power plants of the 4th generation. As a result of the assessment carried out by the group of 100 experts – leading specialists in nuclear energy, six basic concepts of nuclear power were selected for the development of the program MFP-4. This paper considers only three of these six concepts, which have so far received the greatest development. These are reactors cooled by sodium (SFR), lead (LFR) and supercritical pressure water (SCWR).
The paper discusses the features of the development of nuclear power, the implementation of CFC in different countries and mainly in Russia, the stages, timing of their implementation, emerging problems. The use of SCWR reactors for the near future and more distant with a fast neutron spectrum in systems with CFC is substantiated.
1. Nigmatulin B.I. Atomnaya energetika v Rossii i mire [Nuclear power in Russia and the world]. Moscow, IBRAE Publ., 2017.
2. International Atomic Energy Conference “Nuclear power reactors in the world”. Vienna, IAEA, 2016.
3. Pioro I., Kirillov P.L. Tekushchee sostoyanie proizvodstva elektrichestva na AES v mire [The current state of electricity production at nuclear power plants in the world]. Atomnaya tekhnika za rubezhom - Nuclear Technology Abroad, 2013, no. 12, pp. 3-11.
4. А Technology Roadmap for Generation IV Nuclear Energy Systems, (2002). Available at: http://www.gen-4org/PDFs/GenIVRoadmap.pdf (accessed 23.02.2018).
5. Kirillov P.L., Poro I. Pokolenie IV yadernykh reaktorov kak osnova dlya mirovogo proizvodstva elektrichestva v budushchem [Generation IV nuclear reactors as the basis for global electricity production in the future]. Atomnaya tekhnika za rubezhom - Nuclear Technology Abroad, 2014, no. 2, pp. 3-12.
6. Assessment of nuclear energy systems based of a closed nuclear fuel cycle with fast reactors. A report IAEA-TECDOC-1639. Vienna, 2010.
7. Uranium 2016: Resources Production and Demand, (2015). Available at: https://www.oecd-nea.org/ndd/pubs/2016/7301-uranium-2016.pdf (accessed 27.02.2018).
8. Spent Fuel Performance Assessment and Research, (2015). Available at: https://www-pub.iaea.org/books/iaeabooks/10889/Spent-Fuel-Performance-Assessment-and-Research (accessed 01.03.2018).
9. Gagarinskiy A.Yu. Komissiya “Goluboy lenty” o yadernom budushchem Ameriki [Blue Ribbon Commission on America’s Nuclear Future]. Atomnaya energiya - Atomic Energy, 2012, vol. 112, no. 4, pp. 249-251.
10. U.S. Energy Information Administration, Annual Energy Outlook 2016, (2016).Available at: https://www.eia.gov/outlooks/aeo/pdf/0383(2016).pdf (accessed 01.03.2018).
11. Mezhdunarodnoe sotrudnichestvo goskorporatsii Rosatom [International cooperation of Rosatom State Corporation]. Available at: https://www.rosatom.ru/about/international/ (accessed 01.03.2018).
12. Demeshko M.P., Paramonov D.V., Dub A.V., Veselov D.O., Makhin V.M. O perspektivakh tekhnologii VVER [On the prospects of WWER technology]. Trudy nauchno-tekhnicheskoy konf. “Teplofizicheskie eksperimental'nye i raschetno – teoreticheskie issledovaniya v obosnovanie kharakteristik i bezopasnosti yadernykh reaktorov na bystrykh neytronakh. Teplofizika-2016” [Proc. Sci. and Tech. Conf. “Thermophysical experimental and theoretical design calculations to substantiate the characteristics and safety of fast neutron reactors. Thermophysics-2016"]. Obninsk, 2016.
13. Preobrazhenskaya L.B., Sokolova I.D. Novye AES: Uspekhi i problemy. Chast' 2. Problemy reaktorov pokoleniya 3 i 3+ [New NPP: Successes and problems. Part 2. Problems of reactors of generation 3 and 3+]. Atomnaya tekhnika za rubezhom - Nuclear Technology Abroad, 2011, no. 6, pp. 3-14.
14. Itogi deyatel'nosti GK “Rosatom” za 2017 g [The results of the activities of Rosatom SC for 2017]. Strana Rosatom - Country Rosatom, 2017, no. 32, pp. 1-48.
15. Alekseev P.N., Asmolov V.G., Gagarinskiy A.Yu. et al. O strategii razvitiya yadernoy energetiki Rossii do 2050 g [On the strategy for the development of nuclear power in Russia until 2050]. Atomnaya energiya - Atomic Energy, 2011, vol. 111, no. 4, pp. 184-192.
16. ROSATOM strategicheskie tseli 2030 [Rosatom strategic objectives 2030].Available at: rosatom-strategy-0917 (accessed 29.09.2017).
17. Novaya programma Rosatoma [New Rosatom program]. Strana Rosatom - Country Rosatom, 2012.
18. Ponomarev–Stepnoy N.N. et al. Dvukhkomponentnaya yadernaya energeticheskaya sistema s teplovymi i bystrymi reaktorami v zamknutom yadernom toplivnom tsikle [A two-component nuclear power system with thermal and fast reactors in a closed nuclear fuel cycle]. Moscow, Technosphere Publ., 2016.
19. Glebov A.P., Baranaev Yu.D., Klushin A.V. Otsenka stoimosti perspektivnykh yadernykh energoblokov na predproektnoy stadii razrabotki [Estimation of the cost of prospective nuclear power units at the predesign stage of development]. Trudy 10 mezhdunarodnoy nachuno-tekhnicheskoy konferentsii “Obespechenie bezopasnosti AES s VVER” [Proc. 10th Int. Sci. and Techn. Conf. “Ensuring the safety of NPPs with VVER”]. Podol'sk, 2017.
20. Alekseev P.N., Dekusar V.M., Marova E.V. et al. Razvitie fiziko-tekhnicheskikh resheniy po proektu BN-1200 v kontekste povysheniya konkurentosposobnosti tekhnologii BN [Development of physico-technical solutions for the BN-1200 project in the context of increasing the competitiveness of BN technology]. Trudy nauchno-tekhnicheskoy konferentsii “Neytronika-2017” [Proc. Sci. and Techn. Conf. "Neutronics-2017"]. Obninsk, 2017.
21. Gonchar N.I., Pankratov D.V. Opredelenie kharakteristik vykhoda poloniya iz ZhMT v gazovuyu fazu po eksperimental'nym dannym GNTs RF-FEI [Determination of the characteristics of the output of polonium from iron ore to the gas phase using experimental data from the SSC RF-FEI]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika-2013” [Proc. Sci. and Techn. Conf. "Thermophysics-2013"]. Obninsk, 2013.
22. Lopatkin A.V., Orlov V.V. et al. Toplivnyy tsikl reaktorov BREST [BREST reactor fuel cycle]. Atomnaya energiya - Atomic Energy,2000, vol. 89, no. 4, pp. 308-314.
23. Bakanov M.V., Troyanov V.M., Sheremet'eva T.O. Toplivoobespechenie dvukhkomponentnoy yadernoy energetiki Rossii [Fuel supply of two-component nuclear energy of Russia]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika-2013” [Proc. Sci. and Techn. Conf. "Thermophysics-2013"]. Obninsk, 2013.
24. Proektirovanie bystrogo reaktora so svintsovym teplonositelem (LFR): bezopasnost', neytronnaya fizika, teplogidravlika, mekhanika konstruktsiy, toplivo, aktivnaya zona i kon-struktsiya ustanovki [Design of a fast lead coolant reactor (LFR): safety, neutron physics, thermal hydraulics, structural mechanics, fuel, core, and installation design]. Novosti Atomnoy Nauki i Tekhniki - News of Atomic Science and Technology, 2011, no. 225-228.
25. Poplavskiy V.M. et al. Aktivnaya zona i toplivnyy tsikl dlya perspektivnogo natrievogo reaktora [Core and fuel cycle for a promising sodium reactor]. Atomnaya energiya - Atomic Energy, 2010, vol. 108, no. 4, pp. 206-211.
26. Pshakin G.M., Moseev P.A., Korobeynikov V.V., Moseev A.L. Razrabotka bazy dannykh gra-zhdanskogo plutoniya v Rossii i ee primenenie [Development of a database of civilian plutonium in Russia and its application]. Yadernaya energetika - Nuclear Power, 2017, no. 1, pp. 5-10.
27. Chibinyaev A.V. Neytronno-fizicheskie kharakteristiki evolyutsionnogo SUPER-VVER so spek-tral'nym regulirovaniem [Neutron-physical characteristics of the evolutionary SUPER-VVER with spectral regulation]. Trudy mezhdunarodnoy nachuno-tekhnicheskoy konferentsii “Obespechenie bezopasnosti AES s VVER” [Proc. Int. Sci. and Techn. Conf. “Ensuring the safety of NPPs with VVER”]. Podol'sk, 2012.
28. Oka Y., Koshizuka S. Design Concept of Once-Through Cycle Supercritical-Pressure Light Water Cooled Reactors. Proc. 4th Int. Symposium on Supercritical Water-Cooled Reactors. Tokyo, Japan, 2000.
29. Baranaev Yu.D., Glebov A.P., Kirillov P.L., Klushin A.V. Neutronic Characteristics of a 30 MWt SCW Experimental Reactor: From Water-Cooled Power Reactor Technology to a Direct Cycle Nuclear Reactor with Supercritical Water Parameters and Fast Neutron Spectrum. Proc. conf. ISSWCR-6. Shenzhen, Guangdong, China, 2013, Paper 13108.
30. Yetisir M., Gaudet M., Rhodes D. Development and Integration of Canadian SCWR Concept with Counter-Flow Fuel Assembly. Proc. conf. ISSWCR-6. Shenzhen, China, 2013, Paper 13059.
31. Glebov A.P., Klushin A.V., Baranaev Yu.D., Kirillov P.L. Presearch of Features of U-Pu-Th Fuel Cycle and its use for Burning up of Minor Actinides in Supercritical Water-Cooled Reactor with Fast Neutron Spectrum. Proc. conf. ICONE21. Chengdu, China, 2013, Paper 16888.
32. Nuclear Enjineering and Radiation Science, 2018, vol. 4, no. 1.
33. Glebov A.P., Klushin A.V. Reaktor s bystro-rezonansnym spektrom neytronov, okhlazhdaemyy vodoy sverkhkriticheskogo davleniya pri dvukhkhodovoy skheme dvizheniya teplonositelya [A reactor with a fast-resonance spectrum of neutrons, cooled by supercritical water at a two-way flow pattern of the coolant]. Atomnaya energiya - Atomic Energy, 2006, vol. 100, no. 5, pp. 349-355.
34. Ryzhov S.B., Mokhov, V.A., Nikitenko M.P. et al. Kontseptsiya odnokonturnoy RU VVER-SKD s korpusnym reaktorom, okhlazhdaemym vodoy sverkhkriticheskogo davleniya [The concept of a single-loop VVER-SKD RP with a supercritical water-cooled tank reactor]. Trudy 5 Mezhdunarodnogo simpoziuma ISSCWR-5 [Proc. 5th Int. Symposium ISSCWR-5]. Vancouver, Canada, 2011.
35. Baranaev Yu.D., Glebov A.P., Klushin A.V. Aktivnaya zona s bystro-rezonansnym spektrom neytronov so sverkhkriticheskim davleniem vody [An active zone with a fast-resonance neutron spectrum with supercritical water pressure]. Patent RF, no. 2485612, 2013.
36. Glebov A.P., Terent'eva M.I. Razrabotka prototipa reaktora SCWR, okhlazhdaemogo vodoy pri sverkhkriticheskom davlenii, v ramkakh programmy GIF (MPF-4) [Development of a prototype SCWR reactor cooled by water at supercritical pressure, in the framework of the GIF program (MPF-4)]. Atomnaya tekhnika za rubezhom - Nuclear Technology Abroad, 2014, no. 5.
37. Markov S.I., Balikoev A.G., Dub V.S. et al. Razrabotka vysokoprochnoy teplostoykoy stali dlya VVER so sverkhkriticheskimi parametrami teplonositelya [Development of high-strength heat-resistant steel for VVER with supercritical coolant parameters]. Trudy 10 mezhdunarodnoy nachuno-tekhnicheskoy konferentsii “Obespechenie bezopasnosti AES s VVER” [Proc. 10th Int. Sci. and Techn. Conf. “Ensuring the safety of NPPs with VVER”]. Podolsk, 2017.