Shelemetiev V.M., Ivanov I.I., Askhadullin R.Sh., Storozhenko A.N., Kuzin P.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The article is devoted to the internal construction of solid-electrolyte oxygen sensors in gases developed at the SSC RF — IPPE, namely: a liquid-metal reference electrode and an electrical lead. The influence of their design on the metrological characteristics of the sensor is considered. The lack of use of molybdenum electrical lead is shown — oxidation of molybdenum in oxygen-saturated liquid bismuth with the formation of an oxide layer having mixed electron-ionic conductivity. As a result, an additional source of EMF appears on the surface of molybdenum electrical lead, contributing to the total sensor signal and causing instability in time.
The degree of influence of molybdenum oxidation on the metrological characteristics of oxygen sensors in gases and in liquid metals differ greatly due to differences in operating conditions:
- higher rate of temperature change in the gas (thermal shock);
- higher oxidative potential of the external environment — air (high operating currents and leakage currents).
These differences cause a more intensive formation of the oxide layer on the surface of the molybdenum electrical lead and the low mechanical strength of this layer in oxygen sensors in gases.
Various ways of solving the problem of signal instability have been proposed, in particular, replacing the material of electrical lead from molybdenum to lead or bismuth oxides, as well as steel grades EI-852 (Russian nomenclature), AISI 321, electrical steel with silicon content 4.5 wt. % and others. The results of comparative tests of solid-electrolyte oxygen sensors in gases with molybdenum electrical leads, with electrical leads based on lead and bismuth oxides, and steel are presented.
1. Shelemetiev V.M., Martynov P.N., Storozhenko A.N., Chernov M.E., Ulyanov V.V. Kontrol' primesey kisloroda i vodoroda v zashchitnom gaze ustanovok s TZhMT [Oxygen and hydrogen impurities control in the protective gas of hlmc-based facilities]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty - Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2015, no. 3, pp. 142–162.
2. Bogdanov S.V. Razrabotka i eksperimental'noe obosnovanie oborudovaniya sistemy kontrolya vodorodnoy bezopasnosti AES. Diss. kand. tekh. nauk [Development and experimental substantiation of the equipment of the monitoring system of hydrogen safety of nuclear power plants. Cand. techn. sci. diss.]. Obninsk, 2009.
3. Shelemetiev V.M., Ivanov I.I., Askhadullin R.Sh., Bogdanov S.V. Faktory, opredelyayushchie tochnost' izmereniya kontsentratsii kisloroda v gaze podkupol'nogo prostranstva AES tverdoelektrolitnym datchikom kisloroda s zhidkometallicheskim elektrodom sravneniya [Factors determining the accuracy of measuring the concentration of oxygen in the gas of the NPP dome space by a solid-oxygen electrolyte oxygen sensor with a liquid metal reference electrode]. Trudy XV mezhdunarodnoy konferentsii “Bezopasnost' AES i podgotovka kadrov” [Proc. XV Int. Conf. "NPP Safety and Training"]. Obninsk, 2018, pp. 188–189.
4. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies. Vienna, Nuclear Energy Agency, 2007.
5. Schroer C., Konys J., Verdaguer A., Abella J., Gessi A., Kobzova A., Babayan S., Courouau J.-L. Design and testing of electrochemical oxygen sensors for service in liquid lead alloys. Journal of Nuclear Materials, 2011, vol. 415, pp. 338–347.
6. Kulikov I.S. Termodinamika oksidov [Thermodynamics of oxides]. Moscow, Metallurgiya Publ., 1986.
7. Kleykamp H., Supawan A. Gibbs energies of formation of MoO2 and Mo4O11. Journal of the Less Common Metals, 1979, vol. 63, pp. 237–244.
8. Panek Z., Fitzner K. Gibbs free energy of formation of In2O3 and CaIn2O4. Thermochimica Acta, 1986, vol. 97, pp. 171–176.
9. Jacob K.T., Mansoor A.K. Gibbs energy of formation of bismuth (III) oxide. Thermochimica Acta, 2016, vol. 630, pp. 90–96.
10. Aiswarya P.M., Ganesan R., Rajamadhavan R., Gnanasekaran T. Partial phase diagram of MoO3 rich section of the ternary Bi-Mo-O system. Journal of Alloys and Compounds, 2018, vol. 745, pp. 744–752.
11. Egashira M., Matsuo K., Kagawa S., Seiyama T. Phase diagram of the system Bi2O3-MoO3. Journal of catalysis, 1979, vol. 58, pp. 409–418.
12. Prokhorov A.M. Fizicheskaya entsiklopediya. Tom 2 [Physical Encyclopedia. Volume 2]. Moscow, Sovetskaya entsiklopediya Publ., 1988.
13. Yeliseyeva O., Tsisar V., Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen. Corrosion Science, 2008, vol. 50, pp. 1672–1683.
14. Sim L.T., Lee C.K., West A.R. High oxide ion conductivity in Bi2MoO6 oxidation catalyst. Journal of Materials Chemistry, 2002, vol. 12, pp. 17–19.
15. Chernov M.E. Datchik kapsul'nogo tipa dlya kontrolya kisloroda v konturakh YaEU s teplonositelyami svinets i svinets-vismut. Diss. kand. tekhn. nauk [Capsule type sensor for monitoring oxygen in nuclear power circuits with lead and bismuth coolants. Cand. techn. sci. diss.]. Obninsk, 2005.
16. Benar Zh. Okislenie metallov. Teoreticheskie osnovy [Oxidation of metals. Theoretical basis]. Moscow, Metallurgiya Publ., 1968.
17. Solov'ev V.A., Komrakov G.S. Rastvorimost' elementov v zhidkom vismute [Solubility of elements in liquid bismuth]. Obninsk, IPPE Publ., 1975.
18. Uiks K.E., Blok F.E. Termodinamicheskie svoystva 65 elementov, ikh oksidov, galogenidov karbidov i nitridov [Thermodynamic properties of 65 elements, their oxides, carbide and nitride halides]. Moscow, Metallurgiya Publ., 1965.
19. Speranskaya Е.I. Fazovaya diagramma okis’ vismuta – okis’ volframa [Phase diagram bismuth oxide – tungsten oxide]. Izvestiya AN SSSR, seriya Neorganicheskiye materialy — Izvestiya of the Academy of Science of the USSR, Inorganic Materials, 1970, vol. 6, pp. 127–129.
20. Muktha B., Guru Row T.N. Crystal structure and ionic conductivity of a new bismuth tungstate, Bi3W2O10.5. Journal of chemical science, 2006, vol. 118, pp. 43–46.
21. Lee H.S., Oh I.H., Lee J.H., Lee S.D., Park Y.H. A study on growth of lead molybdate single crystals and its physical properties. New Physics (Korean Physical Society), 1988, vol. 28, no. 5, pp. 574–579.
22. Imai Y., Nishino K. Corrosion of carbon steel by liquid bismuth. Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, 1963, vol. 15, pp. 186–196.
23. Kurata Y., Saito S. Temperature Dependence of Corrosion of Ferritic/Martensitic and Austenitic Steels in Liquid Lead-Bismuth Eutectic. Materials Transactions, 2009, vol. 50, no. 10, pp. 2410–2417.
24. Samsonov G.V. Fiziko-khimicheskie svoystva okislov [Physical and chemical properties of oxides]. Moscow, Metallurgiya Publ., 1978.
25. Boudjemaa A., Bouarab R., Saadi S., Bouguelia A., Trari M. Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2- solutions (X2=S2- and SO32-). Applied Energy, 2009, vol. 86, pp. 1080—1086.
26. Aspiala M., Sukhomlinov D., Taskinen P. Standard thermodynamic properties of Bi2O3 by a solid-oxide electrolyte EMF technique. Journal of chemical thermodynamics, 2014, vol. 75, pp. 8–12.
27. Ganesan R., Gnanasekaran T., Srinivasa R.S. Determination of standard molar Gibbs free energy of formation of Bi2O3 over a wide temperature range by EMF method. Journal of chemical thermodynamics, 2003, vol. 35, pp. 1703–1716.
28. Ramana Rao A.V., Tare V.B. Free energy of formation of Bi2O3. Scripta metallurgica, 1971, vol. 5, pp. 807–812.
29. Mehrotra G.M., Frohberg M.G., Kapoor M.L. Standard free energy of formation of Bi2O3. Zeitschrift fur Physikalische Chemie Neue Folge, 1976, vol. 99, pp. 304–307.
30. Isecke B., Osterwald J. Equilibria study in the bismuth-oxygen system. Zeitschrift fur Physikalische Chemie Neue Folge, 1979, vol. 115, pp. 17–24.
31. Fitzner K. Diffusivity, activity and solubility of oxygen in liquid bismuth. Thermochimica Acta, 1980, vol. 35, pp. 277–286.
32. Schaefer S.C. Electrochemical determination of thermodynamic properties of bismuth sesquioxide and stannic oxide. U.S. Bureau of Mines, RI, 1984.
33. Talanchuk P.M., Shmatko B.A., Zaika L.S., Tsvetkova O.E. Poluprovodnikovye i tverdoelektrolitnye sensory [Semiconductor and solid electrolyte sensors]. Kiev, Tekhnika Publ., 1992. 224 p.
34. Ganesan R., Gnanasekaran T., Srinivasa R.S. Standard molar Gibbs free energy of formation of PbO(s) over a wide temperature range from EMF measurements. Journal of Nuclear Materials, 2003, vol. 320, pp. 258–264.
35. Kulikov I.S. Termodinamika oksidov [Oxide thermodynamics]. Moscow, Metallurgiya Publ., 1986.
36. Massalski T.B. (Ed.). Binary Alloys Phase Diagrams. The Materials Information Society, USA, 1990.