Grabezhnaya V.A., Mikheyev A.S.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
One of the promising areas for the development
of large-scale power engineering is the creation of nuclear power plants with fast
reactors. The NPP high energy parameters also require an increase in the
parameters of the water circuit. It is necessary to increase both the pressure of the output
steam and its flow rate to obtain a higher efficiency of the station. In the developed projects of reactor plants, steam generators (SG)
of integral design are considered. Any SG design requires experimental
justification both in terms of confirming the design parameters for steam, and
in terms of thermal hydraulics of the steam generating channel. In once-through steam generators under a
certain combination of operating parameters (power, pressure, temperature, feed
water flow rate), self-sustaining oscillations in the flow rate of the working
fluid, the so-called hydrodynamic instability, can be observed. Density-wave
oscillation instabilities lead to a non-stationary crisis of heat transfer. A
lot of work is devoted to the experimental finding the instability thresholds,
most of which was carried out on models with steam-generating tubes in the form
of coiled channels.
This paper presents the results of tests of various models of steam-generating channels,
which were carried out in IPPE at the SPRUT facility, for the occurrence of
thermohydraulic instability. The effect of length of the steam generating straight
tube on the length of wall temperature oscillations zone is shown. The stabilizing effect of vortex flows (coiled channel or tube with
internal fins) on thermal-hydraulic stability is noted.
1.
Obzor yadernykh tekhnologiy – 2016 [Review of
Nuclear Technologies – 2016]. IAEA General Conference, 13 July, 2016,
GC(60)/INF/2. Available at:
https://www.iaea.org/sites/default/files/gc/gc60inf-2_rus.pdf (accessed
14.02.2022).
2.
The Generation IV Technology Roadmap. Recommended reactor system concepts
for Research and development scooping. Technical Working Group Co-Chairs.
Generation IV Leadership Meeting. Houston, Texas. March 15, 2002.
3.
Adamov Е.О., Dzhalavyan А.V., Lopatkin А.V., Molokanov N.А., Muravyev Е.V., Orlov V.V., Kalyakin S.G., Rachkov V.I.,
Troyanov V.M., Avrorin E.N., Ivanov V.B., Aleksakhin R.M. Conceptual framework
of a strategy for the development of nuclear power in Russia to 2100. Atomic Energy, 2012, vol. 112, no. 6, pp. 391–403.
Available at: https://link.springer.com/article/10.1007/s10512-012-9574-x (accessed 13.12.2021).
4.
Yoo J., Chang J., Lim J.-Y., Cheon J.-S., Lee T.-H.,
Kim S.K., Lee K.L., Joo H.-K. Overall System Description and Safety
Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea. Nuclear
Engineering and Technology, 2016, vol. 48, pp. 1059–1070.
5.
Nakai R. Safety Design Criteria (SDC) Gen-IV
Sodium-Cooled Fast Reactor. Proc. of the International
Conference on Fast Reactors and Related Fuel Cycles
(FR13). Paris,
France. 4–7 March, 2013.
6.
Vasiliev B.A., Vasyaev A.V., Zverev
D.L., Shepelev S.F. Sostoyanie razrabotki proekta BN-1200 [Status
of BN-1200 project development]. Trudy III mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Innovatsionnye proekty i tekhnologii yadernoy energetiki”. [Proc. III Intern. Sci.
Tech. Conf. “Innovative designs and
technologies of nuclear power”]. Moscow, NIKIET, 2014,
vol. 1, pp. 114–127.
7.
Orlov V.V., Filin A.I., Tsykunov
V.S., Sila-Novitsky A.G., Smirnov V.S., Leonov V.N. Zadachi i
trebovaniya k konstruktsii opytno-demonstratsionnogo reaktora BREST-OD-300
[Problems and requirements to the design of experience-demonstration reactor
BREST-300]. Trudy
konferentsii “Tyazhelye zhidkometallicheskiye teplonositeli v yadernykh
tekhnologiyakh” [Proc.
Sci. Tech. Conf. “Heavy Liquid Metal Coolants in Nuclear Technologies”].
Obninsk, 1999, vol. 2, pp. 450–457.
8.
Damiani L., Pini Prato A., Revetria R. Innovative Steam
Generation ALFRED Lead-Cooled Fast Reactor Demonstrator. Applied
Energy, 2014, vol. 121, pp. 207–218.
9.
Blokhina A.S.,
Lyakishev S.L., Solomatina V.A. Perspectivnyi korpusnoi parogenerator dlya
energobloka na bystrykh neytronakh s natriyevym teplonositelem [Advanced shell steam generator for sodium-cooled fast reactors]. Voprosy atomnoy nauki i
tekhniki. Seriya: Obespechenie bezopasnocty AES – Problems of Atomic Science
and Technology. Series: Providing the safety of
nuclear power plants, 2012,
no. 31, pp. 5–14.
10. Govorov P.P., Kuznetsov A.A.
Gidrodinamicheskaya neustoichivost’ v parogenerarorakh energobloka BN-600 i eye
diagnostirovanie [Hydrodynamic instability in the BN 600 power unit steam
generator and its diagnosis]. Izvestiya
vuzov. Yadernaya energetika, 2005, no. 1, pp. 91–94.
11. Boure J.A., Bergles A.E., Tong L.S. Review of
Two-Phase Flow Instability, Nuclear
Engineering and Design, 1973, vol. 25, pp. 165–192.
12. Metodicheskie ukazaniya. Teplovoy i
gidravlicheskiy raschet teploobmennogo oborudovaniva AES [Technic instructions. Thermal and
hydraulic calculation of heat transfer facilities of NPP]. RD
24.035.05-89. Leningrad, NPO TSKTI Publ., 1991, 210 p.
13. Kokorev B.V., Farafonov V.A. Parogeneratory yadernykh energeticheskikh
ustanovok s zhidkometallicheskim okhlazhdeniyem [Steam generators of nuclear power plants with liquid metal
cooling]. Moscow, Energoatomizdat Publ., 1990.
263 p.
14. Kakac S., Bon B. A Review of Two-Phase Flow Dynamic Instabilities in
Tube Boiling Systems. Heat and Mass Transfer, 2008, vol. 51, pp. 399–433.
15. Yadigaroglu G., Bergles A.E. Fundamental and Higher-Mode Density
Wave Oscillations in Two-Phase Flow. Transactions of ASME. Ser. C. Journal
of Heat Transfer, 1972, vol. 94, pp. 189–195.
16. Yoon J. Sizing of a Tube Inlet Orifice of a Once-Through Steam
Generator to Suppress the Parallel Channel Instability. Nuclear Engineering
and Technology , 2021, vol. 53, pp. 3643–3652.
17. Ishii M. Thermally Induced Flow Instabilities in Two-Phase
Mixtures in Thermal Equilibrium. Ph.D. Thesis, GIT, 1971.
18. Ogorev L.E., Likhosherst A.I., Ivanov A.I., Titov V.F. Metody
opredeleniya napryazheniy i dolgovechnosti parogeneriruyushchikh trub [Methods for stress and durability determinations of
heat transfer tubes]. Trudy seminara SEV “Opyt
razrabotki i ekspluatatsii parogeneratorov bystrikh reaktorov” [Proc. of SEV Seminar “Experience of Development and Operation of Fast
Reactors Steam Generators]. May, 18–21, 1982.
Dimitrovgrad, NIIAR, 1982, pp. 395–404.
19. Petrov A.P. Gidrodinamika pryamotoctnogo kotla [Hydrodynamics
of once-through boiler]. Moscow, Gosenergoizdat Publ., 1960. 169 p.
20. Kang H.O., Seo J.K., Kim Y.W., Yoon J., Kim K.K. Structural Integrity
confirmation of a Once-Through Steam Generator from the Viewpoint of Flow
Instability. Journal of Nuclear Science and Technology, 2007,
vol. 44, no. 1, pp. 64–72.
21. Sudakov A.V., Trofimov A.S. Pul’satsii temperatury i
dolgovechnost elementov energooborudovaniya [Temperature oscillations and
normal operating period of power equipment units]. Leningrad,
Energoatomizdat Publ., 1989, 176 p.
22. Akagava B.K., Sacaguchi T., Kono M., Nishimura M. Study on
Distribution of Flow Rates and Flow Stabilities in Parallel Long Evaporators. Bulletin
of the JSME, 1971, vol. 14, pp. 837–849.
23. Guo L.-J., Feng Z.-P., Chen X.-J. Pressure Drop Oscillation of
Steam-Water Two-Phase Flow in Helically Coiled Tube. Int. J. HeaT Mass
Transfer, 2001, vol. 44, no. 8, pp. 1555–1564.
24. Efferding L.E. Dynamic Stability Experimental/Analytical Program
Results on a Multiple Tube Sodium Heated Steam Generator Model Employing Double
Wall Tubes. ASME paper 83-WA/Ne-7, 1983.
25. France D.M., Carlson R.D., Roy R.P., Harden R.E. Dynamic
Stability Experiments in Once-Through LMFBR Steam Generators. ANL-84-86
Report, 1984, 200 p.
26. Suzuoki A. Studies of Thermal-Hydrodynamic Flow Instability. Bulletin
of the JSME, 1977, vol. 20, pp. 1291–1289.
27. Berezin A.N., Grabezhnaya V.A., Mikheyev A.S., Orlov Y.I., Parfenov
A.S., Sergeev V.V.
Raschetno-eksperimental’noe issledovanie parogeneratora RU BREST-OD-300 [Numerical and experimental investigation of
the steam generator of the BREST-OD-300 facility]. Trudy
III mezhdunarodnoy nauchno-tekhnicheskoy
konferentsii “Innovatsionnye proekty i
tekhnologii yadernoy energetiki” [Proc. III Intern. Sci. Tech. Conf. “ Innovative designs and technologies of nuclear power”]. Moscow, NIKIET, 2014,
vol. 1. pp. 224–236.
28. Poplavsky V.M. Fast
Reactor Technology. Status and prospects. Atomic Energy, 2004, vol. 96, no. 5, pp. 301–307.
Available at:
https://link.springer.com/article/10.1023/B:ATEN.0000038094.56394.e6 (accessed
14.02.2021).
29. Kirillov P.L., Bobkov V.P. Zhukov A.V., Yur'yev
Yu.S. Spravochnik po
teplogidravlicheskim raschetam v yadernoi
energetike. Tom 1. Teplogidravlicheskie protsessy v YAEU [Handbook of thermohydraulic
calculations. Volume 1. Thermohydraulics in
NPU]. Moscow, IzdAt Publ., 2010, 776 p.
30. Chum J., MosnerovaJ., Bica J., Grachev N.S., Kirillov
P.L., Prokhorova V.A., Turchin N.M. Pul’satsii temperatury teploperedayushchey stenki
v modeli parogeneratora, obogrevaemogo natriem [Temperature oscillations of heat transfer wall of the sodium heated
steam generator model]. Otchet GKIAE i ChSKAE
[Report GKIAE and ChSKAE]. No. 78-05017. Praha, GIIM Publ., 1978, 46
p.
31. Kirillov P.L., Grachev
N.S., Turchin N.M., Khudasko V.V., Schneller I., Bista I., Khum I. Temperature
pulsations in the heat-transmitting wall of a steam generator model with heated
sodium. Atomic Energy, 1983, vol. 54, no. 5, pp. 328–331. Available at: https://link.springer.com/article/10.1007/BF01124767
(accessed 14.02.2022).
32. Grabezhnaya V.A., Mikheyev A.S.
O teplogidravlicheskoi ustoichivosti
parogeneriruyushchego kanala s zhidkometallicheskim
obogrevom [About thermohydraulic stability of the steam generator channel with
liquid-metal heating] Trudy V mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Innovatsionnye proekty i tekhnologii yadernoy energetiki” [Proc. V Intern. Sci.
Tech. Conf. “Innovative designs and
technologies of nuclear power”]. Moscow, NIKIET, 2018,
pp. 583–592. (CD).
33. Grabezhnaya V.A., Mikheyev A.S.
Eksperimental'nye
issledovaniya v obosnovanie
parogeneratorov novogo pokoleniya, obogrevaemykh zhidkometallicheskim
teplonositelem [Experimental studies to justify the new steam generators heated
by liquid metal]. Trudy
nauchno-tekhnicheskoy konferentsii “Teplofizika reaktorov novogo pokoleniya
(Teplofizika-2016)” [Proc. Sci.
Tech. Conf. “Thermal physics of a new generation reactors (Thermophysics-2016)”].
Obninsk, 2016, pp. 211–222. (CD).
34. Grachev N.S., Kirillov
P.L., Prokhorova V.A. Eksperimental'noye issledovaniye
teploobmena v parogeneriruyushchey trube s vnutrennim orebreniyem [Experimental
study of heat transfer in steam generator tube with internal ribs]. Teplofizika
vysokikh temperatur – High temperature, 1975,
vol. 14, no. 6, pp. 1234–1240.
35. Grabezhnaya V.A., Mikheyev A.S., Shtein Yu.Yu.,
Semchenkov A.A. Raschetno-eksperimental'noye is-sledovaniye rabotyy modeli
parogeneratora [Numerical and experimental investigation of the model steam
generator reactor facility BREST-OD-300]. Izvestiya
vuzov. Yadernaya energetika, 2013, no. 1,
pp. 101–109.
36. Grabezhnaya V.A., Mikheyev A.S., Kryukov A.E. Ispytaniya modeli parogeneratora BREST pri
rabote na chastichnykh i puskovykh rezhimakh [Tests of the BREST steam generator model when operating in
partial and starting modes]. Nauchno-tekhnicheskiy
sbornik “Itogi nauchno-tekhnicheskoy deyatel'nosti Instituta yadernykh
reaktorov i teplofiziki za 2012 god” [Sci.-Tech.
Proc. “Results of scientific and technical activities of the Institute of
Nuclear Reactors and Thermal Physics in 2012”]. Obninsk, IPPE, 2013, pp. 131–142.
37. Grabezhnaya V.A., Parfenov A.S., Mikheyev A.S. O
konvektivnom teploobmene v vitykh kanalakh s zhidkometallicheskim obogrevom
[Convective heat transfer in coiled channels with liquid-metal heating]. Voprosy atomnoy nauki i tekhniki. Seriya:
Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology.
Series: Nuclear and Reactor Constants, 2016, no. 5, pp. 175–183. Available at: https://vant.ippe.ru/year2016/5/1217-15.html
(accessed (05.05.2021).
38. Grabezhnaya V.A., Mikheyev A.S.
Teplogidravlicheskiye ispytaniya mnogotrubnoy modeli parogeneratora v rezhime
chastichnykh parametrov [Thermal hydraulic tests of a multitube model of a
steam generator in the mode of partial parameters]. Voprosy atomnoy nauki i tekhniki. Seriya:
Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology.
Series: Nuclear Reactor Constants, 2017, no. 3, pp. 177–186. Available
at: https://vant.ippe.ru/year2017/3/thermal-physics-hydrodynamics/1384-15.html
(accessed (05.05.2021).