Milinchuk V.K., Belozerov V.I., Askhadullin S.R.
Obninsk Institute for Nuclear Power Engineering National Research Nuclear University MEPhI, Obninsk, Russia
The article considers a hydroheterogenic
method and a generator for producing hydrogen from water based on compositions
of aluminum and aluminum alloys. Chemical activators of metals that remove the
Al2O3 oxide coating from the aluminum surface are
silicon-and calcium-containing compounds, for example, liquid sodium and
potassium glass, sodium metasilicate crystal hydrates, oxides and hydroxides of
alkali metals, quicklime and slaked lime. The electric energy source is not
used for the operation of the hydrogen generator, which ensures its autonomy,
mobility, safety, and also reduces the cost of hydrogen. The hydroheterogenic
method makes it possible to obtain pure hydrogen with a capacity of several to
hundreds of liters per hour. The hydrogen generator is a metal cylinder with a
length of 20 cm, a diameter of 7 cm, consisting of an upper chamber and a
lower chamber with a length of 10 cm and a volume of 0.4 liters. The
chambers are interconnected by a threaded connection with a rubber seal with a
thickness of 2 microns. The lower reaction chamber is designed to produce
hydrogen by chemical decomposition of water with activated aluminum. To do
this, a composition is placed on the bottom of the lower chamber, which is a
uniformly distributed thin layer of aluminum in the form of highly dispersed
aluminum powder, aluminum powder or crushed thin aluminum foil. The metal layer
is filled with water weighing from 1.0 to 30.0–50.0 g. For this purpose water
of various salt composition is used – distilled, tap, oceanic. Chemical
activators of aluminum and aluminum alloys are aqueous solutions of silicon-and
calcium-containing reagents-liquid sodium and potassium glass, sodium
metasilicate crystal hydrates of various compositions, quicklime and slaked
lime, etc. The duration of the hydrogen generation process is controlled by
changes in the composition of the generating composition, the activating
aqueous solution and the temperature.
1. Tarasov B.P., Lototsky M.V. Vodorodnaya energetika: proshloye, nastoyashcheye, vidy na budushcheye [Hydrogen energy:
past, present, views for the future]. Rossiyskiy khimicheskiy zhurnal – Russian Chemical Journal, 2006, vol. L, no. 6, pp. 5–18.
2. Sheindlin A.E., Zhuk A.Z. Kontseptsiya alyumovodorodnoy energetiki [The concept of
aluminum-hydrogen energy]. Rossiyskiy khimicheskiy zhurnal – Russian Chemical Journal, 2006, vol. L, no. 6, pp. 105–108.
3. Subbotin V.I., Ivanovsky M.N., Arnoldov M.N. Fiziko-khimicheskiye
osnovy primeneniya zhidkometallicheskikh teplonositeley [Physico-chemical
bases of application of liquid metal heat carriers]. Moscow, Atomizdat
Publ., 1970. 295 p.
4. Ponomarev-Stepnoy N.N. Nuclear-Hydrogen Power. Atomic Energy, 2004, vol. 96, issue 6, pp. 375–385. Available at: https://link.springer.com/article/10.1023/B:ATEN.0000041203.24874.65 (accessed 19.05.2022).
5. Milinchuk V.K., Klinov D.A. Vodorodnaya energetika. Uchebnoye posobiye [Hydrogen energy. Training manual]. Obninsk, IATE
Publ., 2008. 68 p.
6. Milinchuk V.K., Belozerov V.I., Shilina A.S., Ananyeva O.A., Kunitsyna T.E., Gordienko A.B. Issledovaniye generatsii vodoroda pri
vzaimodeystvii alyuminiya s vodnymi rastvorami [The study of hydrogen
generation in the interaction of aluminum with aqueous solutions]. Izvestiya
vuzov. Yadernaya Energetika, 2013, no. 2, pp. 39–46.
7. Milinchuk V.K., Belozerov V.I., Ananyeva O.A., Laricheva T.E., Kunitsyna T.E. Khimicheskoye razlozheniye vody na vodorod v
geterogennykh alyuminiysoderzhashchikh kompozitsiyakh [Chemical decomposition
of water into hydrogen in heterogeneous aluminum-containing compositions]. Izvestiya
vuzov. Yadernaya Energetika, 2014, no. 4, pp. 32–40.
8. Milinchuk V.K., Klinshpont E.R., Belozerov V.I., Khavroshina I.S., Sadikov E.I. Prevrashcheniya pokrytiy oksida alyuminiya pri
imitatsii faktorov yadernykh energeticheskikh ustanovok [The transformation of
the oxide coatings of aluminium by imitation factors of nuclear power plants]. Izvestiya
vuzov. Yadernaya Energetika, 2016, no. 2, pp. 45–54.
9.
Belozerov V.I., Milinchuk V.K. Issledovaniye gazovodnoy smesi v polosti gil'zy klasternogo reguliruyushchego organa reaktora RBMK-1000
[A study of the gas-water mixture in the rod control cluster assembly sleeve
cavity of the RBMK-1000 reactor]. Izvestiya vuzov. Yadernaya
Energetika, 2018, no. 1, pp. 53–62.
10. Salakhova A.A., Suvorov V.A., Firsova A.I., Belozerov V.I.,
Milinchuk V.K. Vliyaniye bornoy kisloty na generatsiyu vodoroda
alyuminiysoderzhashchimi gidrokompozitsiyami s khimicheskimi aktivatorami [The
effect of boric acid on the generation of hydrogen by aluminum-containing
hydraulic compositions with chemical activators]. Izvestiya vuzov.
Yadernaya Energetika, 2018, no. 3, pp. 171–179.
11. Milinchuk V.K., Merkov S.M. Gidroreaktsionnaya kompozitsiya dlya
polucheniya vodoroda [Hydro-reaction composition for the production of
hydrogen]. Patent RF no. 2371382, 2009, no. 30.
12. Milinchuk V.K., Shilina A.S. Gidroreaktsionnaya geterogennaya
kompozitsiya dlya polucheniya vodoroda [Hydroreaction heterogeneous
composition for the production of hydrogen]. Patent RF no. 2371382,
2011.
13. Milinchuk V.K., Roshchektaev B.M. Avtonomnyy generator vodoroda
[Autonomous hydrogen generator]. Patent RF no. 2510876, 2014.
14. Milinchuk V.K., Klinshpont E.R., Belozerov V.I. Avtonomnyy generator
vodoroda na osnove khimicheskogo razlozheniya vody alyuminiyem [Stand-alone
hydrogen generator based on the chemical decomposition of water by aluminum]. Izvestiya
vuzov. Yadernaya Energetika, 2015, no. 2, pp. 49–59.