Bednyakov S.M., Bezborodov А.А., Izotov V.V., Мikhailov G.М., Prishchepa V.V., Semenov M.Yu.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
At BFS stands the procedure for loading fuel into the core during fast reactor start-up was tested to justify its nuclear safety. The BFS stands are designed to study the neutron-physical characteristics of critical assemblies, including models of fast-neutron reactors. At the critical assembly by means the BFS standard simulation tools may be assembled the fast reactor configuration with a minimum critical mass and measured the effectiveness of its control and protection systems by two different methods (“run-away – rod-drop method” and approached source multiplication method) in order to increase the reliability of measurements. Next, a set of critical mass with a fast reactor start-up core is simulated. Control and protection system (CPS) rods worth was also simulated using two different methods. The evaluation of changes in the efficiency of the fast reactor control and protection systems during the transition from the minimum critical mass to the start-up core took into account. Control and protection system (CPS) rods worth must comply with the modern nuclear safety standards and regulations requirements for the fast reactor project throughout the entire period of its operation. What is possible to prove experimentally during the fast reactor physical start-up simulation procedure at the BFS stands.
1. Kazanskii Yu.А., Doolin V.А., Zinovjev V.P. et al. Metody izucheniya reaktornykh kharakteristik na kriticheskikh sborkakh BFS [Меtodi izuchenija reactornich characteristik na criticheskich sborkach BFS]. Мoscow, Аtomizdat Publ., 1977. 88 p.
2. Klinov D.A., Gulevich A.V., Kagramanyan V.S., Dekusar V.M. & Usanov V.I. Development of Sodium-Cooled Fast Reactors Under Modern Conditions: Challenges and Stimuli. Atomic Energy, 2019, vol. 125, no. 3, pp. 143–148. Available at: https://link.springer.com/article/10.1007/s10512-018-00457-2 (accessed 12.05.2022).
3. NP-033-11 “Obshchiye polozheniya obespecheniya bezopasnosti issledovatel'skikh yadernykh ustanovok” [NP-033-11 “General Safety Provisions of Nuclear Research Installations”]. Moscow, Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2011. 28 p. Available at: http://en.gosnadzor.gov.ru/framework/nuclear/NP-033-11.doc (accessed 12.05.2022).
4. NP-009-17 “Pravila yadernoy bezopasnosti issledovatel'skikh reaktorov” [NP-009-17 “Rules of Nuclear Safety of Research Reactors”]. Moscow, Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2017. 19 p. Available at: http://en.gosnadzor.gov.ru/framework/nuclear/NP-009-17.doc (accessed 12.05.2022).
5. NP-082-07 «Pravila yadernoy bezopasnosti reaktornykh ustanovok atomnykh stantsiy» [NP-082-07 “Nuclear Safety Rules for Reactor Installations of Nuclear Power Plants”]. Moscow, Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2007. 30 p. Available at: http://en.gosnadzor.gov.ru/framework/nuclear/NP-082-07.pdf (accessed 12.05.2022).
6. Polyakov A.J., Bednyakov S.M. Application of experimental database for BFS critical test stands. Proc. of the Symp. Dysnai, Ignalina Youth Nuclear Association. Visaginas, Lithuania, 2002, pp. 111–121.
7. Blyskavka A.A., Korobeynikov V.V., Koshcheyev V.N., Manturov G.N., Nikolayev M.N., Polevoy V.B., Raskach K.F., Rozhikhin Ye.V., Semenov M.YU., Tsibulya A.M. MMKKENO. Certificate of state registration of a computer program № 2014610575, Russian Federation. dated January 15, 2014.
8. Koshcheyev V.N., Manturov G.N., Nikolayev M.N., Semenov M.YU., Tsibulya A.M. CONSYST. Certificate of state registration of a computer program № 2013612298, Russian Federation. dated February 21, 2013.
9. NP-008-16 “Pravila yadernoy bezopasnosti kriticheskikh stendov” [NP-008-16 “Nuclear safety rules for critical test stands”]. Moscow, Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2016. 39 p. Available at: https://gostperevod.com/np-008-16.html (accessed 12.05.2022).
10. Dolgaya doroga “Prometeya”: istoriya bystrogo reactora BN-800 [Long road “Prometheus”: the history of the fast reactor BN-800]. Available at: https://strana-rosatom.ru/2020/10/29/dolgaya-doroga-prometeya-istoriya-bys/ (accessed 12.05.2022).
11. BN-800 – uspeshnyi pusk [BN-800 – successful launch]. Available at: http://www.atominfo.ru/newsi/p0432.htm (accessed 12.05.2022).
12. Russian Fast Reactor Connected to the Grid. POWER. November 1, 2016. Available at: https://www.powermag.com/beloyarsk-nuclear-power-plant-unit-4-sverdlovsk-oblast-russia/?printmode=1 (accessed 12.05.2022).
13. Grachev A.V., Kanunnikov Yu.S., Kulabukhov Yu.S. et al. Tsifrovoy reaktimetr dlya yadernykh reaktorov [A digital reactimeter for nuclear reactors]. Soviet Atomic Energy, 1986, vol. 61, issue 2, pp. 110–112. Available at: https://link.springer.com/article/10.1007/BF01123728 (accessed 12.05.2022).
14. Kazanskii Yu.А., Маtusevich Е.S. Eksperimentaljnaya fizika reaktorov [Tsifrovoy reaktimetr dlya yadernykh reaktorov]. Мoscow, Energoatomizdat Publ., 1984. 352 p.
15. Brikker I.N. Obrashchennoye resheniye uravneniy kinetiki yadernogo reaktora [Inverse solution of the kinetic equations of a nuclear reactor]. Soviet Atomic Energy, 1966, vol. 21, issue 1, pp. 9–13. Available at: https://link.springer.com/article/10.1007/BF01134252 (accessed 12.05.2022).
16. Stewart H.B., La-Violett F.Dj., Kriger T.Dj. Approached source multiplication method in assembly. In: The physics of intermediate spectrum reactors [Russian translation]. Moscow, Atomizdat Publ., 1961. Pp. 66–82.
17. Hogan W.S. Negative reactivity measurements. Nuclear Science and Engineering, 1960, vol. 8, issue 6, pp. 518–522.
18. Kamaev A.A., Klinov D.A., Mikhailov G.M. et al. Calculation and experimental analysis of the BN-800 reactor core neutronic parameters at the stage of reaching first criticality followed by rated power testing. IAEA-CN245-462, 2017, pp. 1–9.