Morozov A.V., Kalyakin D.S., Sakhipgareev A.R., Shlepkin A.S., Soshkina A.S.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The results of experimental and computational studies aimed at substantiating on the operability of passive core cooling systems of the WWER reactor, and as well as improving their design characteristics is considered in the article. The special attention is focused to issues related to the improvement of the passive core cooling systems in case of out-of-design accidents (e.a. Loss-of-coolant accident and blackout) for the safety justification of new projects of WWER. The reactor core is in a boiling state at this time. It is possible to increase boric acid amount in the coolant of the core given its low concentration in the steam phase. It is also possible to achieve conditions for crystallization boric acid boon the outer surface of fuel rods which can lead to deterioration of the heat removal. Another topical problem is the effect of non-condensable gases on the operation of the WWER steam generator in the condensation mode when the steam-gas mixture is stopped of removal from the steam generator tube bundle. The data obtained can be used for computational modeling of emergency processes in nuclear power plants with the WWER reactor during operation of the complex of passive safety systems (HA-2, HA-3, PHRS systems).
1. Kopytov I.I., Kalyakin S.G., Berkovich V.M., Morozov A.V., Remizov O.V. Experimental investigation of non-condensable gases effect on Novovoronezh NPP-2 steam generator condensation power under the condition of passive safety systems operation. Proc. of the 17th International Conference on Nuclear Engineering. ICONE17. Brussels, 2009, pp. 735–743.
2. Morozov A.V., Shlepkin A.S., Kalyakin D.S. et al. Studying the operation of a WWER steam generator in the condensing mode at different parameters of emergency processes. Therm. Eng., 2017, vol. 64, pp. 329–335. DOI: https://doi.org/10.1134/S0040601517050044.
3. Kalyakin S.G., Sorokin A.P., Pivovarov V.A. et al. Experimental Research on Thermophysical Processes for Safety Validation of new-Generation WWER. Atomic Energy, 2014, vol. 116, pp. 293–299. DOI: https://doi.org/10.1007/s10512-014-9856-6.
4. Remizov O.V., Morozov A.V., Tsyganok A.A. Eksperimental'noye issledovaniye neravnovesnykh teplogidravlicheskikh protsessov v sisteme passivnogo zaliva aktivnoy zony reaktora VVER [Experimental Study of Non-equilibrium Thermal-hydraulic Processes in a Passive WWER Core Reflooding System]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2009, no. 4, pp. 115–123.
5. Morozov A.V., Sorokin A.P., Pityk A.V., Sakhipgareev A.R., Soshkina A.S., Shlepkin A.S. Experimental determination of the thermophysical properties of boric acid for WWER emergency regimes. Atomic Energy, 2019, vol. 125, no. 3. pp. 178–184. DOI: 10.1007/s10512-018-00463-4.
6. Morozov A.V., Remizov O.V. Sovremennyye razrabotki sistem passivnogo otvoda tepla vodookhlazhdayemykh reaktorov. [Up-to-date designs of passive heat removal systems of water cooled reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2013, no. 2, pp. 61–78.
7. Styrikovich M.A., Tskhvirashvili D.G., Nebiyeridze D.P. Issledovaniye rastvorimosti bornoy kisloty v nasyshchennom vodyanom pare. [Study of solubility of boric acid at saturated water steam]. Dokl. AN SSSR – Reports AS USSR, 1960, vol. 134, no. 3, pp. 615–617.
8. Morozov A.V., Sorokin A.P., Ragulin S.V. et al. Effect of boric acid mass transfer on the accumulation thereof in a fuel core under emergency modes at NPPs with WMR. Therm. Eng., 2017, vol. 64, pp. 490–495 (2017). DOI: https://doi.org/10.1134/S0040601517070047.
9. Schmal’ I.I., Ivanov M.A. Protsessy massoperenosa bornoy kisloty v avariynykh rezhimakh [Boric acid mass transfer processes in accidental conditions]. Trudy 9-y nauchno-tekhnich. konf. “Obespecheniye bezopasnosti AES s VVER” [Proc. of the 9th International Scientific and Technical Conference “Safety Assurance of NPP WWER”]. Podolsk, JSC EDB “Hydropress”, 2015, pp. 25–29.
10. Morozov A.V., Pityk A.V., Ragulin S.V., Sahipgareev A.R., Soshkina A.S., Shlyopkin A.S. Otsenka vliyaniya kapel'nogo unosa bornoy kisloty na yeye nakopleniye v reaktore VVER v sluchaye avarii i [Estimation of influence of boric acid drop entrainment to its accumulation in the WWER reactor in the case of accident]. Izvestiya vuzov. Yadernaya Energetika, 2017, no. 4, pp. 72–82. DOI: https://doi.org/10.26583/npe.2017.4.07.
11. Berkovich V.M., Peresadko V.G., Taranov G.S., Remizov O.V., Morozov A.V., Tsyganok A.A., Kalyakin D.S. Experimental study on Novovoronezh NPP-2 steam generator model condensation power in the event of the beyond design basis accident. Proc. of the International Congress on Advances in Nuclear Power Plants 2010, ICAPP 2010. San Diego, CA, 2010, pp. 186–192.
12. Rivkin S.L., Aleksandrov A.A. Teplofizicheskiye svoystva vody i vodyanogo para [Thermophysical properties of water and steam]. Moscow, Energiya Publ., 1980, 424 p.
13. Kutepov A.M., Sterman L.S., Stjushin N.G. Gidrodinamika i teploobmen pri paroobrazovanii. Ucheb. posobiye dlya vuzov [Hydrodynamics and heat transfer during steam generation. Textbook for universities]. Moscow, Vysshaya shkola Publ., 1986. 448 p.