Daichenkova Yu.S., Nikulin M.Yu., Oleinik D.S., Sergeev G.S.
National Research Center “Kurchatov Institute”, Moscow, Russia
Using the precision MCU code that implements the Monte Carlo method, the computational benchmark experiments developed by the European Group on Radiation Dosimetry based on two voxel phantoms of the opposite gender presented by the International Commission on Radiation Protection were simulated. The usage of the universal geometric module NCG, implemented in MCU, made it possible to define anthropomorphic phantoms with a high level detalization of internal organs structure, without any simplifications.
Four calculated benchmarks were considered in the scope of the work. In the first and third benchmarks, point (60Co) and surface (241Am) sources of gamma radiation were modeled, in the second, a point monoenergetic neutron source (Е = 10 keV), in the fourth, a volume source of beta radiation (16N).Good agreement between the results of calculations of equivalent and effective doses with the results obtained using the MCNPX2.6 and TRIPOLI-4 programs, as well as the consideration of sources of various types of radiation and configurations, led to the conclusion that it is possible to effectively use the considered method for modeling the radiation transport through human tissues based on the voxel-phantom technology using the MCU code for a wide range of topical tasks related to dosimetric studies and justification of radiation safety.
1. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP, 2007, vol. 37(2-4).
2. Fisher H.L.J. and Snyder W.S. Variation of dose delivered by 137Cs as a function of body size from infancy to adulthood. ORNL-4007. Oak Ridge, TN: Oak Ridge National Laboratory, 1966. P. 221.
3. Drexler G., Kramer R. Die Grösse Äquivalentdosisindex (ÄDI) und ihre praktische Bedeutung im Strahlenschutz. Proc. of the 12th Annual Meeting of the Fachverband für Strahlenschutz. Norderney, 2–6 October 1978, pp. 773–817.
4. ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP, 2009, vol. 39, no. 2.
5. Rabus H., Gomez-Ros J.-M., Villagrasa C., Eakins J.S., Vrba T., Blideanu V., Zankl M., Tanner R., Struelens L., Brkic H., Domingo C., Baiocco G., Caccia B., Huet C., Ferrari P. Quality assurance for the use of computational methods in dosimetry. Proc. of EURADOS Working Group 6 ’Computational Dosimetry. J. Radiol. Prot. 2021, vol. 41, pp. 46–58.
6. Hadid L., Gardumi A., and Desbrée A. Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation. Radiation Protection Dosimetry, 2013, vol. 156, pp. 141–159.
7. Huet C., Eakins J., Zankl M., Gomez-Ros J.-M. et al. Monte Carlo calculation of organ and effective doses due to photon and neutron point sources and typical X-ray examinations: Results of an international intercomparison exercise. Radiation Measurements, 2022, vol. 150, p. 106695. DOI: https://doi.org/10.1016/j.radmeas.2021.106695.
8. Eakins J., Huet C., Brkic H., Capello K. et al. Monte Carlo calculation of organ and effective dose rates from ground contaminated by Am-241: Results of an international intercomparison exercise. Radiation Measurements, 2021, vol. 148, p. 106649. DOI: https://doi.org/10.1016/j.radmeas.2021.106649.
9. Gomez-Ros J.M., Moraleda M., Arce P. et al. Monte Carlo calculation of the organ equivalent dose and effective dose due to immersion in a 16N beta source in air using the ICRP reference phantoms. Radiation Measurements, 2021, vol. 145, p. 106612. DOI: https://doi.org/10.1016/j.radmeas.2021.106612.
10. Lee Y. (September 4, 2020). Organ Dose Calculations Using ICRP Adult Voxel Phantoms and TRIPOLI-4 Monte Carlo Code. ASME J of Nuclear Rad Sci., 2020, vol. 6, issue 4, p. 041105. DOI: https://doi.org/10.1115/1.4046213.
11. Kalugin M.A., Oleynik D.S., Shkarovsky D.A. Overview of the MCU Monte Carlo software package. Annals of Nuclear Energy, 2015, vol. 82, pp. 54–62.
12. ICRP, 2002. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP, 2002, vol. 32, pp. 3–4.
13. Gurevich M.I., Oleinik D.S., Shkarovskii D.A. Adaptatsiya programmy MCU-PD k parallel'nym vychisleniyam na mnogoprotsessornykh komp'yuterakh [Adaptation of the MCU-PD code to parallel computing on multiprocessor computers]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2009, no. 4, pp. 66–77.
14. Oleynik D.S., Saprykin D.K., Sergeev G.S., Shkarovsky D.A. MCU-PD Code Calculation of Personnel Irradiation Dose in an Accident with Coolant Leakage in Serviced Enclosures in NPP with VVER-1000. Atomic Energy, 2021, vol. 130, no. 1 pp. 37–40. DOI: https://doi.org/10.1007/s10512-021-00771-2.
15. ICRP, 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116. Ann. ICRP, 2010, vol 40(3-4).
16. Cullen D.E., Hubbel J.H., Kissel L. EPDL97, the evaluated photon data library. ’97 version. Report UCRL-50400, vol. 6, rev. 5. Lawrence Livermore National Laboratory, Livermore, CA.
17. Zabrodskaya S.V., Ignatyuk A.V., Kosheev V.N., Manokhin V.N., Nikolaev M.N., Pronyaev V.G. ROSFOND – rossiyskaya natsional'naya biblioteka neytronnykh dannykh [ROSFOND – Russian National Library of Neutron Data]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 2007, vol. 1–2, p. 3.
18. Mancusi. D., Bonin A., Hugot F.-X. Advances in Monte-Carlo code TRIPOLI-4’s treatment of the electromagnetic cascade. EPJ Web of Conferences, 2018, vol. 170 (3), p. 01008. DOI: https://doi.org/10.1051/epjconf/201817001008.
19. Cullen D.E. A Survey of Electron Cross Section Data for use in EPICS2017. Nuclear Data Services, IAEA-NDS-226, 2017.
20. Plompen A., Cabellos O., De Saint Jean C. et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. The European Physical Journal A, 2020, vol. 56.
21. White W.C. Photoatomic Data Library MCPLIB04: A New Photoatomic Library Based On Data from ENDF/B-VI Release 8. LA-UR-03-1019, 2003.
22. White M.C. Further Notes on MCPLIB03/04 and New MCPLIB63/84 Compton Broadening Data for All Versions of MCNP5. LA-UR-12-00018, 2012.
23. Adams K.J. Electron Upgrade for MCNP4B. LA-UR-00-3581, 2000.
24. Chadwick M.B., Obložinský P., Herman M. et al. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets, 2006, vol. 107(12), pp. 2931–3060.