EDN: JJHYLY
Authors & Affiliations
Titarenko Yu.E.1, Mednikov I.V.1, Batyaev V.F.1, Pavlov K.V.1, Titarenko A.Yu.1, Legostaev V.O.1, Zhivun V.M.1, Zaritskiy Ya.O.1, Kovalishin A.A.1, Davidenko V.D.1, Kuteev B.V.1, Kashchuk Yu.A.2, Meshchaninov S.A.2, Obudovsky S.Yu.2
1 National research center “Kurchatov institute”, Moscow, Russia
2 Private institution “ITER-Center”, Moscow, Russia
Titarenko Yu.E.1 – Head of Laboratory, Dr. Sci. (Phys.-Math.), Professor. Contacts: 25, Bolshaya Cheremushinskaya st., Moscow, Russia, 117218. Tel.: +7 (916) 659-99-27; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Mednikov I.V.1 – Deputy Head of the Complex.
Batyaev V.F.1 – Senior Researcher, Cand. Sci. (Phys.-Math.).
Pavlov K.V.1 – Leading Researcher, Cand. Sci. (Phys.-Math.).
Titarenko A.Yu.1 – Senior Researcher, Cand. Sci. (Phys.-Math.).
Legostaev V.O.1 – Head of Laboratory.
Zhivun V.M.1 – Senior Researcher, Cand. Sci. (Phys.-Math.).
Zaritskiy Ya.O.1 – Laboratory Assistant.
Kovalishin A.A.1 – Deputy Director for Nuclear Technologies, Dr. Sci. (Phys.-Math.), Corresponding Member, Russian Academy of Sciences.
Davidenko V.D.1 – Head of the Department, Dr. Sci. (Phys.-Math.).
Kuteev B.V.1 – Deputy Head of the Department Tokamaks for Hybrid Systems, Dr. Sci. (Phys.-Math.), Professor.
Kashchuk Yu.A.2 – Head of the Department, Cand. Sci. (Phys.-Math.).
Meshchaninov S.A.2– Researcher.
Obudovsky S.Yu.2 – Researcher.
Abstract
A description of the setup and methodology for conducting activation benchmark experiments for measuring spectral indices is given. The neutron generator NG-24M was used as a fusion neutrons source, which emits neutrons with an energy of ~14.1 MeV, and samples with a known isotopic and chemical composition were used as experimental samples. Measerenents of products (n, n), (n, p), (n, pn), (n, α), (n, n'γ) and (n γ) reactions was carried out using two γ-spectrometers based on coaxial HP detectors of the GC2518 type and one planar detector GUL 0110 type. A spectrometer with a LaBr3(Ce) scintillator was used to measure short-lived reaction products. The absolute detection efficiency of the spectrometers was determined using exemplary spectrometric gamma sources certified by VNIIM named D.I. Mendeleev. The procedure for measuring irradiated samples is fully automated using the developed sample changers USO-45 and USO-48. The γ-spectra were processed using the GENIE2000 software. The SIGMA code was used to accumulate and store primary information, identify the resulting radioactive products, and calculate independent and/or cumulative reaction rates. The dimensions and composition of the materials of the installation elements are presented, which are necessary to create a mathematical model used for transport simulation.
Keywords
fusion facility, 233U–232Th fuel cycle, blanket, NG-24M neutron generator, cumulative/independent reaction rates, experimental samples, coaxial/planar HP detectors, threshold products of (n, 2n), (n, p), (n, pn), (n, α), (n, n'γ) reactions, products of (n, γ) capture reactions, sample changer set up
Article Text (PDF, in Russian)
References
- Shpanskiy Y.S. and DEMO-FNS Team. Progress in the design of the DEMO-FNS hybrid facility. Nuclear Fusion, 2019, vol. 59, no. 7, 076014. DOI: https://doi.org/10.1088/1741-4326/ab14a8.
- Kuteev B.V., Shpanskiy Y.S. and DEMO-FNS Team. Status of DEMO-FNS development. Nuclear Fusion, 2017, vol. 57, no. 7, 076039. DOI: https://doi.org/10.1088/1741-4326/aa6dcb.
- Azizov E.A. et al. Tokamak DEMO-FNS: concepts of magnet system and vacuum chamber. Problems of Atomic Science and Technology Series: Thermonuclear Fusion, 2015, vol. 38, no. 2, pp. 5–18. DOI: https://doi.org/10.21517/0202-3822-2015-38-2-5-18.
- Batistoni P., Angelone M., Fischer U., Klix A., Kodeli I., Leichtle D., Pillon M., Pohorecki W., Villari R. Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons. Nuclear Fusion, 2012, vol. 52, p. 083014.
- Seidel K., Batistoni P., Fischer U., Freiesleben H., Klix A., Leichtle D., Poenitz E., Unholzer S., Villari R. Measurement and analysis of neutron and gamma-ray flux spectra in a neutronics mock-up of the HCPB test blanket module. Fusion Engineering and Design, 2007, vol. 82, pp. 2212–2216.
- Batistoni P., Angelone M., Bettinali L., Carconi P., Fischer U., Kodeli I., Leichtle D., Ochiai K., Perel R., Pillon M., Schaferd I., Seidel K., Verzilov Y., Villari R., Zappa G. Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up. Fusion Engineering and Design, 2007, vol. 82, pp. 2095–2104.
- Ikeda Y. et al. Joint Report of JAERI/USDOE Collaborative Program of Fusion Neutronics-Induced Radioactivity Measurements in Fusion Neutron Environment. JAERI-M03-018 164. Japan Atomic Energy Research Institute, 1993.
- Titarenko Yu.E., Pavlov K.V., Titarenko A.Yu., Legostaev V.O., Zhigulina M.A., Khalikov R.S., Zhivun V.M., Kulevoy T.V., Kovalishin A.A., Dudnikov A.A., Blandinskiy V.Yu., Davidenko V.D., Ioannisian M.V., Belousov V.I., Dyachkov I.I., Chernov K.G., Malkov M.R., Kuteev B.V., Kashchuk Yu.A., Meshchaninov S.A., Obudovsky S.Yu., Stankovskiy A.Yu., Konobeyev A.Yu. Benchmark Experiments for Verification of Nuclear Data Libraries for Designing Fusion Blankets. Fusion Science and Technology, 2022, vol. 78, pp. 549–572.
- Titarenko Yu.E., Ananev S.S., Batyaev V.F., Belousov V.I., Blandinskiy V.Y., Chernov K.G., Davidenko V.D., Dudnikov A.A., Dyachkov I.I., Ioannisian M.V., Kovalishin A.A., Khripunov V.I., Kuteev B.V., Legostaev V.O., Malkov M.R., Pavlov K.V., Titarenko A.Yu., Zhigulina M.A., Zhivun V.M., Kashchuk Y.A., Meshchaninov S.A., Obudovsky S.Y., Stankovskiy A.Y., Konobeyev A.Yu. Radiation and Nuclear Physics Aspects of the Use of the Thorium Fuel Cycle in a Hybrid Fusion Facility Blankets. Fusion Science and Technology, 2023, vol. 79, issue 2, pp. 117–134. DOI: https://doi.org/10.1080/15361055.2022.2121525.
- Syromukov S.V., Stepnov V.V., Dobrov R.V., Sysoev V.I., Mel'nik A.V., Bogatikov K.V., Starostin A.N., Letichevskii R.D. NG-24 neutron generator for nuclear medicine and fusion research. At. Energy, 2015, vol. 119, issue 1, pp. 68–71.
- Kormilitsyn T.M. et al. Study of the Neutron Flux of NG-24M Neutron Generator. Proc. of the International Scientific Conf. CPT1617, 2017, p. 229.
- Titarenko Yu.E., Batyaev V.F., Karpikhin E.I., Mulambetov R.D., Koldobsky A.B., Zhivun V.M., Mulambetova S.V., Lipatov K.A., Nekrasov Yu.A., Belkin A.V., Alexeev N.N., Schegolev V.A., Goryachev Yu.M., Luk'yashin V.E., Firsov E.N. Experimental and Theoretical Study of the Yields of Residual Product Nuclei in Thin Targets Irradiated by 100–2600 MeV Protons. IAEA, Nuclear Data Section, Wagramer Strasse 5, A-1400 Vienna, INDC(CCP)-434, September 2002. Available at: http://www-nds.iaea.org/publications/indc/indc-ccp-0434.pdf (accessed 16.05.2023).
- Storm E., Israel H.I. Photon cross section from 1 keV to 100 MeV for elements Z=1 to Z=100.
Atomic Data and Nuclear Data Tables, 1970, vol. 7, issue 6, pp. 565–681. DOI: https://doi.org/10.1016/S0092-640X(70)80017-1.
- BIPM JCGM 100:2008, GUM 1995 with minor corrections, in: Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, first ed., 2008.
- www.sigmaaldrich.com, CAS Numbers: 7440-02-2, 7429-90-5, 7440-48-4, 7440-32-6, 7439-89-6, 7440-74-6. www.goodfellow.com, Artikel-Nrs: ZR000300/4, CD000240/4, MG000300/23. chttps://www.acros.com/, CAS Number: 7440-30-4. Copper-63 (Cu-63) 98.50–99.80 % metal; http://www.isotop.ru/en/view/1325/. Copper-65 (Cu-65) 99.00–99.70 % metal; http://www.isotop.ru/en/view/1326/. Zinc-64 (Zn-64) 87.00–99.90 % metal; http://www.isotop.ru/en/view/1646/.
- Genie™ 2000 Gamma Analysis Software. Mirion Technologies (Canberra), Inc.
- Zhivun V.M. and Titarenko Yu.E. Certificate of State Registration of the Program for PC. No. 2015617025, Rospatent Federal Service for Intellectual Property, 2015.
UDC 539.172.4
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2023, no. 2, 2:5