EDN: GDNTKO
Authors & Affiliations
Sergeev V.V., Kazantsev A.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Sergeev V.V. – Senior Researcher. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-51-13; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Kazantsev A.A. – Leading Researcher, Cand. Sci. (Tech.), Associate Professor.
Abstract
The work considers the design model of the heat removal of the shutdown heat of spent nuclear fuel in the “wet” spent fuel pool due to the evaporation of water and the removal of evaporating steam by ventilated air. This method of heat removal is decisive for a small thermal load of spent fuel pool up to 2 kW per 1 m2 of evaporation surface and stopping forced cooling due to the operation of the heat exchanger of FP. All fuel pools of Bilibino NPP meet this condition. The model is based on the theory of similarity of heat exchange and mass exchange processes and is implemented in analytical form. Analytical comparison was performed with a similar numerical model in the TRAC system thermohydraulic code (TRACE). It is shown that not all system thermohydraulic codes and CFD codes have a complete and closed evaporation model from the liquid-gas interface. For practical use of the developed evaporation model, an integral (LP point) model of the dynamics of thermal operation modes of fuel pool, implemented numerically, is presented. The presented model is characterized by a high speed of calculations, which classifies it as a simulator for driving thermal modes of fuel pools for a period of more than 10 years. Such key figures cannot be obtained using system (industry) codes.
Keywords
spent fuel pool (FP), spent fuel assembly (SFA), Bilibino nuclear power plant (BiNPP), thermohydraulic industry codes, heat exchanger (HE), evaporation from the water surface, atmospheric water steam condensation, similarity theory
Article Text (PDF, in Russian)
References
- Bedretdinov M.M., Stepanov O.E. Validatsiya kodov KORSAR/GP i SOKRAT/V1 dlya usloviy poteri okhlazhdeniya basseyna vyderzhki otrabotannogo yadernogo topliva [KORSAR/GP and SOCRAT/V1 codes’ validation for the loss of cooling at spent fuel pool conditions]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 3, pp. 213–225. Available at: https://vant.ippe.ru/year2021/3/thermal-physics-hydrodynamics/2048-18.html (accessed 02.03.2023).
- Balashevsky А.S., Shevielov D.V., Vlasenko N.I., Kozlov V.Ya. Modelirovaniye s pomoshch'yu programmnogo koda MELCOR avarii v basseyne vyderzhki OYAT energobloka № 1 yuzhno-ukrainskoy AES pri narushenii teplootvoda [Model analysis of spent fuel pit severe accident for SUNPP (Unit 1) under blackout and heat removal failure using MELCOR 1.8.5.]. Izvestiya vuzov. Yadernaya Energetika, 2013, no. 3, pp. 15–23. DOI: https://doi.org/10.26583/npe.2013.3.02 (in Russian).
- RK KORSAR. Rukovodstvo pol'zovatelya [CORSAR Calculation Code User Manual]. Sosnovy Bor. 2006. P. 257. Available at: https://korsar.niti.ru/wp-content/uploads/sites/2/2022/04/um_v3_ru.pdf (accessed 18.11.2022).
- RELAP5-3D. Code Manual. User’s Guidelines. NUREG/CR-5535 Idaho National Engineering and Environmental Laboratory INEL-95/0174, vol. 5, rev. 1. 2002. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/008/27008531.pdf (accessed 22.11.2022).
- Spore J.W., Jolly-Woodruff S.J., Knight T.K., Lin J-C., Nelson R.A., Pasamehmetoglu K.O., Steinke R.G., Unal C. TRAC-PF1/M0D2 Code Manual, Volume 1, Theory Manual. NUREG/CR-5673, LA-12031-M, 1993.
- Heat Exchanger Handbook. Vol.1 Translation from English. Ed. Martynenko O. Moscow, Energoatomizdat Publ., 1987. 560 p. Available at: https://www.c-o-k.ru/library/document/12959 (accessed 18.11.2022).
- Orvos M., Szabo V., Pus T. Skorost' ispareniya so svobodnoy poverkhnosti nagretoy zhidkosti [Rate of evaporation from the free surface of the heated liquid]. Prikladnaya mekhanika i tekhnicheskaya fizika – Applied mechanics and technical physics, 2016, vol. 57, no. 6, pp. 168–179.
- Burtsev S.I., Tsvetkov Yu.N. et al. Vlazhnyy vozdukh. Sostav i svoystva: Ucheb. Posobie [Composition and properties: Educational Manual]. St. Petersburg, SPbGAKhPT Publ., 1998. 146 р. Available at: http://booksshare.net/index.php?id1=4&category=chem&author=burcev-si&book=1998 accessed 22.11.2022).
- ANSYS Fluent Theory Guide. Release 15.0. 2013. Available at: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf (accessed 22.11.2022).
- Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel Using Scale. Oak Ridge National Laboratory, 2011. Available at: https://info.ornl.gov/sites/publications/Files/Pub31857.pdf (accessed 18.11.2022).
- Technical Basis for a Proposed Expansion of Regulatory Guide 3.54-Decay Heat Generation in an Independent Spent Fuel Storage Installation. United States Regulatory Commission, 2010. Available at: https://www.nrc.gov/docs/ML1008/ML100850213.pdf (accessed 22.11.2022).
- Sergeev V.V. Osobennosti raschetnogo modelirovaniya teplovykh rezhimov basseynov vyderzhki BiAES [Specific features of numerical simulation of thermal operation mode the spent fuel pools of Bilibino NPP]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 1, pp. 91–107.
- Yudov Yu.V. Chislennoe modelirovanie teplogidravlicheskikh protsessov v tsirkulyatsionnykh konturakh reaktornykh ustanovok s vodyanym teplonositelem. Dis. doktor tekh. nauk [Numerical modeling of thermal and hydraulic processes in circulation circuits of reactor plants with water coolant. Dr. tech. sci. diss.]. FGBUN “Institut problem bezopasnogo razvitiya atomnoy energetiki Rossiyskoy akademii nauk” Sosnovy Bor, 2021. Available at: http://www.ibrae.ac.ru/docs/108/yudoviavtoreferat.pdf (accessed 09.03.2023).
UDC 621.311.25
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2023, no. 2, 2:21