Lavrova O.V., Legkikh A.Yu.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The investigation of corrosion of structural steels in the coolant is one of the important factors in the justification of the safety of nuclear facilities. A feature of heavy liquid metal coolants carriers is their corrosive effect on structural steels. The justification of the corrosion resistance of steels is carried out mainly on the basis of steel samples experimental studies. Steel samples are tested at research facilities under conditions simulating the conditions of a nuclear reactors. At research of the steel durability in heavy liquid metal coolants the basic attention, as a rule, is given to the temperature factor and the dissolved oxygen concentration in the coolant concerning which experimental results for the same steel quality are systematized and kinetic dependences are under construction. However, one of the key factors affecting the physicochemical processes at the “coolant – steel” boundary is the oxidative potential of the coolant. The oxidative potential of the coolant affects the selectivity of the oxidation of steel components significantly, and, consequently, the corrosion process. In the present work the analysis of agency of oxygen potential of an environment on selectivity of oxidation of steel components, in particular, iron and chromium is made. The physical model of oxidation of the firm alloys, explaining considerable excess of streams of iron over streams of chromium from steels in heavy liquid metal coolants and the mechanism of transformation of magnetite in chromic spinel, and then in chromium oxide is offered.
1. Rusanov A.E., Levin O.E., Gushchina A.G. et al. Issledovaniye korrozionnoy stoykosti stali EP823 posle ispytaniy v potoke Pb-Bi [Investigation of the corrosion resistance of EP823 steel after testing in
a Pb-Bi flow]. Trudy konf. “Tyazhelyye zhidkometallicheskiye teplonositeli v yadernykh tekhnologiyakh” (TZHMT – 2013) [Proc. of the Conf. “Heavy Liquid Metal Coolants in Nuclear Technologies”
(HLMC – 2013)]. Obninsk, 2013, pp. 287–297.
2. Barbier F., Rusanov A. Corrosion behavior of steels in flowing lead-bismut. Journal of Nuclear Materials, 2001, vol. 296, pp. 231–236.
3. Martinelli L., Terlain A., Delpech S., Santarini G., Favergeon J., Moulin G., Tabarant M., Picard G. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I). Corrosion Science, 2008, vol. 50, pp. 2527–2536.
4. Martinelli L., Terlain A., Bosonnet S., Picard G., Santarini G. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy at 470 °C (Part II). Corrosion Science, 2008, vol. 50, pp. 2537–2548.
5. Safonov I. Razrabotka termodinamicheskoy modeli i issledovaniye mekhanizma formirovaniya passivnoy plenki na splavakh zhelezo-khrom i nikel'-khrom primenitel'no k nerzhaveyushchim stalyam v vode vysokikh parametrov. Avtoreferat diss. kand. khim. nauk [Development of a thermodynamic model and study of the mechanism of formation of a passive film on iron-chromium and nickel-chromium alloys in relation to stainless steels in water of high parameters. Cand. chem. sci. diss. abstract]. Moscow, 2011.
6. Martinelli L., Desgranges C., Rouillard F., Ginestar K., Tabarant M., Rousseau K. Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C: Detailed analysis of the inner oxide layer. Corrosion Science, 2015, vol. 100, pp. 253–266.
7. Orlova E.A., Orlov A.V. Zashchita konstrukcionnyh materialov ot korrozii v zhidkih metallah [Protection of Constructional Materials Against Corrosion in Liquid Metals]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2016, no. 4, pp. 200–214.
8. Golosov O.A., Nikolkin V.N., Barybin A.V., Hvostov S.S. K metodike issledovaniya vynosa i massoperenosa produktov korrozii staley v svintse [The Technique of Outflow and Mass Transfer Investigation for Steel Corrosion Products in Lead].Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2017, special issue, pp. 44–51.
9. Lavrova O.V., Ivanov K.D., Legkikh A.Yu. Metodika obrabotki eksperimental'nykh dannykh po kinetike okisleniya staley v TZHMT na primere perlitnoy stali EP79 v svintse-vismute [Method for processing experimental data on the kinetics of steel oxidation in HLMC on the example of pearlitic steel EP79 in lead-bismuth]. Sbornik tezisov dokladov konf. “Tyazhelyye zhidkometallicheskiye teplonositeli v yadernykh tekhnologiyakh” (TZHMT – 2018) [Proc. of the conf. “Heavy liquid metal coolants in nuclear technologies” (HLMC – 2018)]. Obninsk, 2018, p. 110.
10. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. Edition Handbook: Nuclear Energy Agency Organization for Economic Co-Operatopn and Development, 2015.
11. Askhadullin R.Sh. et al. Sovremennoe sostoyanie razrabotok AO «GNC RF – FEI» datchikov aktivnosti kisloroda dlya reaktornyh ustanovok s tyazhelym zhidkometallicheskim teplonositelem [The Current State Jsc “SSC RF – IPPE” of Development of Oxygen Activity Sensors for Reactors with a Heavy Liquid Metal Coolant]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2017, special issue, pp. 12–19.
12. Termodinamicheskie konstanty individual'nyh veshchestv: Spravochnik. Pod. red. Glushko V.P. T. I–IV [Thermodynamic constants of individual substances: Handbook. Ed. Glushko V.P. Vol. I–IV]. Moscow, Nauka Publ., 1978–1982.
13. Kulikov I.S. Termodinamika oksidov. Spravochnik [Thermodynamics of oxides. Handbook]. Moscow, Metallurgiya Publ., 1986. 342 p.
14. Lavrova O.V., Legkikh A.Yu. Termodinamika ravnovesnykh sostoyaniy i podkhody k analizu massoperenosa v metallooksidnykh sistemakh [Thermodynamics of Equilibria and Approaches to Analyzing the Mass Transport in Metal-Oxide Systems]. Izvestiya vuzov. Yadernaya energetika, 2020, no. 2, pp. 39–51.
15. Lavrova O.V., Legkikh A.Yu. Thermodynamics of equilibrium states and approaches to analyzing the mass transport in metal-oxide systems. Nuclear Energy and Technology, 2020, vol. 6 (4), pp. 261–268.
16. Zalkin V.M. Priroda evtekticheskikh splavov i effekt kontaktnogo plavleniya [The nature of eutectic alloys and the effect of contact melting]. Moscow, Metallurgiya Publ., 1987. 152 p.