EDN: SRZLTL
Authors & Affiliations
Kushnir N.O., Grol A.V., Nevinitsa V.A.
National Research Center “Kurchatov Institute”, Moscow, Russia
Kushnir N.O. – Research Engineer. Contacts: Contacts: 1, pl. Akademika Kurchatova, Moskow, Russia, 123182. Tel.: +7 (499) 196-94-09; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Grol A.V. – Deputy Head of Department.
Nevinitsa V.A. – Head of the Department, Cand. Sci. (Tech.).
Abstract
Currently, the design development of modular high-temperature gas-cooled reactors (HTGR) is intensively underway in the world, which can contribute to solving the problem of electricity generation and high-temperature heat. The distinctive features of this type of reactor make the task of verifying neutron physics codes used in the design of HTGR relevant.
For validation, the authors analyzed a number of experiments carried out on critical configurations of the ASTRA stand modeling the PBMR reactor. A special feature of the PBMR reactor is the use of spherical fuel located in the core in the form of a ball filling as fuel elements. Simplifications in the modeling of pebble bed (the use of a regular lattice when specifying the geometry of the pebble bed) lead to additional methodological uncertainties, which can affect the results of neutron physics calculations.
For a more precise simulation of pebble bed, the Kurchatov Institute has developed a software tool that allows generating stochastic pebble beds for detailed 3d-models of HTGR reactors and critical facilities modeling them, taking into account the laws of physics, the properties of structural materials and reflectors.
This paper demonstrates the operability of the developed software tool, and the models created with its help are used in modeling experiments at the ASTRA critical stand for validation of the neutron-physical MCU-HTR code.
Keywords
pebble bed, ASTRA critical stand, benchmark, calculation method, HTGR, modeling, verification, calculation codes
Article Text (PDF, in Russian)
References
- Grebennik V.N. et al. Vysokotemperaturnyye gazookhlazhdayemyye reaktory – innovatsionnoye napravleniye razvitiya atomnoy energetiki [High-temperature gas-cooled reactors – an innovative direction for the development of nuclear energy]. Мoscow, Energoatomizdat Publ., 2008. 136 p.
- Mordvintsev V.M., Kodochigov N.G., Sukharev Yu.P. Eksperimental'nyye issledovaniya protsessov vvoda v sharovuyu zasypku VTGR sredstv kompensatsii reaktivnosti [Experimental studies of the processes of introducing reactivity compensation means into the HTGR ball fill]. Trudi NGTU imeni R.E. Alekseeva – Proceedings of NSTU named after R.E. Alekseev, 2019, no. 3, pp. 80–90. DOI: 10.46960/1816-210X_2019_3_80.
- Cui M., Guo J., Wang Y., Liu B., Kong B., Zhu K., Li F. Pebble-Bed High-Temperature Gas-Cooled Reactor Burnup Uncertainty Analysis Based on Fine Burnup History and Fine Burnup Chains. Nuclear Power Engineering, 2023, no. 2, pp. 9–14. DOI: 10.13832/j.jnpe.2023.02.0009.
- Lin Z., Wang Q., Zhan Y., Ti W., Peng Q., Gong B. Development of Thermal Aging Test Platform for Ceramic Internals of High Temperature Gas Cooled Reactor. Equipment Environmental Engineering, 2023, no. 4, pp. 72–78. DOI: CNKI:SUN:JSCX.0.2023-04-010.
- Volkov Yu.N. et.al. Modelirovaniye nestatsionarnykh eksperimentov na kriticheskom stende ASTRA s pomoshch'yu programmnoy sistemy SHIPR [Simulation of non-stationary experiments at the ASTRA critiral facility using the SHIPR software-based system]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and reactor constants, 2019, no. 3, pp. 110–119.
- Ville R., Heikki S., Jaakko L., Riitta K.-R. Modeling of realistic pebble bed reactor geometries using the Serpent Monte Carlo code. Annals of Nuclear Energy, 2015, vol. 77, pp. 223–230. DOI: 10.1016/j.anucene.2014.11.018.
- Amin A., Naser V., Mohammad B.G. An exact MCNP modeling of pebble bed reactors. World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering, 2011, vol. 5, no. 11, pp. 959–963. DOI: 10.5281/zenodo.1061906.
- Ponomarev-Stepnoy N.N., Kuharkin N.E., Glushkov E.S., Bobrov A.A., Boyarinov V.F., Garin V.P., Grebennik V.N., Danelia S.V., Demin V.E., Zimin A.A., Kompaniets G.V., Krutov A.M., Lobyntsev V.A., Marova E.V., Nevinitsa V.A., Nedorezov S.G., Nosov V.I., Polyakov D.N., Samarin E.N., Smirnov O.N., Stepennov B.S., Sukharev Yu.P., Fomichenko P.A., Chunyaev E.I. Eksperimenty na kriticheskom stende ASTRA v obosnovanie neytronno-fizicheskikh parametrov VTGR modul'nogo tipa [Experiments at the ASTRA critical stand to substantiate the neutronic parameters of a modular-type HTGR]. Preprint FGU Rossiyskiy nauchnyy tsentr “Kurchatovskiy institute” IAE-6340/4 – Preprint. Russian Scientific Center “Kurchatov Institute”, Moskva, 2004.
- Ponomarev-Stepnoi N.N., Kukharkin N.E., Bobrov A.A., Chuniaev E.I., Garin V.P., Glushkov E.S., Kompaniets G.V., Krutov A.M., Lobyntsev V.A., Polyakov D.N., Smirnov O.N., Zimin A.A. Experiments on HTR criticality parameters at the ASTRA facility of the Kurchatov Institute. Nuclear Engineering and design, 2003, vol. 222, no. 2, pp. 215–229. DOI: 10.1016/S0029-5493(03)00013-X.
- IAEA-TECDOC-1694. Evaluation of high temperature gas cooled reactor performance. Vienna: International Atomic Energy Agency, 2013. 690 p.
- Available at: https://unity.com/ (accessed 11.07.2024).
- Alekseev N.I., Bolshagin S.N., Gomin E.A., Gorodkov S.S., Gurevich M.I., Kalugin M.A., Kulakov A.S., Marin S.V., Novoseltsev A.P., Oleynik D.S., Pryanichnikov A.V., Sukhino-Khomenko E.A., Shkarovsky D.A., Yudkevich M.S. Status MCU-5 [MCU-5 Status]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika i tekhnika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics and Technology of Nuclear Reactors, 2011, no. 4, pp. 4–23.
- Gurevich M.I., Bryzgalov V.I. The Neutrons Flux Density Calculation by Monte Carlo Code for the Double Heterogeneity Fuel. Proc. of Int. Conf. on Reactor Physics and Reactor Computations. Tel-Aviv, Jan. 23–26, 1994, pp. 190–196.
- Gurevich M.I., Shkarovskyi D.A. Raschet perenosa neytronov metodom Monte-Karlo po programme MCU: Uchebnoe posobie [Calculation of neutron transport by the Monte Carlo method using the MCU program: Tutorial]. Moscow, Natsional'nyy issledovatel'skiy yadernyy universitet “MIFI” Publ., 2012. 156 p.
- Ponomarev-Stepnoi N.N., Bryzgalov V.I., Glushkov E.S., Gomin E.A., Gurevich M.I., Demin V.E., Kompaniets G.V., Lobyntsev V.A., Nosov V.I., Polyakov D.N., Smirnov O.N., Tel’kovskaya O.V. Using the MCU computer program to analyze the results of critical experiments with HTGR fuel pellets on the ASTRA testing stand. At Energy, 2004, vol. 97, issue 4, pp. 669–677. DOI: https://doi.org/10.1007/s10512-005-0001-4.
UDC 621.039.4
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:11