EDN: GMHNIU
Authors & Affiliations
Mitskevich A.V.1, Popov A.O.1, Volkova S.N.1, Gritsai A.S.1, 2
 
1 Alexandrov Research Institute of Technology, Sosnovy Bor, Russia
2 Peter the Great St. Petersburg Polytechnic University, Sosnovy Bor, Russia
 
 Mitskevich A.V.1 – Engineer 2d Category.
Popov A.O.1 – Head of Group. Contacts: 72, Koporskoye shosse, Sosnovy Bor, Leningrad region, Russia, 188540. Tel.: +7 (81369) 60-366; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
 Volkova S.N.1 – Leading Researcher, Cand. Sci. (Tech.). 
Gritsai A.S.1, 2 – Head of Department, Senior Lecturer, Department of NPP Design and Operation, Cand. Sci. (Tech.). 
Abstract
A problem of current importance is the development of computer codes for safety analysis of nuclear reactors with liquid metal coolant.
In accordance with this, a specialized version of the KORSAR/LMR calculation code was developed that allows for numerical modelling of steady states, transient and emergency modes of LMC reactors.
The validity of numerical simulations greatly depends on the degree of elaboration of a system of closure relations for thermal-hydraulic models in computer codes. 
The paper presents flow regime and heat transfer maps used in the KORSAR/LMR calculation code and serving as the basis for a closure relations system in this computer code. An analysis of the correlations for drag and heat transfer coefficients of the walls in channels with different geometries is presented. Closure relations for the two-phase region in the gas – liquid heavy metal coolant system are considered. Closure relations for interphase drag are chosen based on analysis of data in international literature. A modification of selected relations is proposed and the modified relations are validated against available experiment data.
The results of numerical modelling of experiments simulating inter-loop leakage are presented. The obtained results indicate the adequacy of the KORSAR/LMR computer code modeling of processes occurring in the LMC loops.
Keywords
closure relations, liquid metal coolant, computer code, two-phase flow, single-phase flow, interphase drag, interphase heat transfer, wall heat transfer, flow regime maps, heat transfer maps, liquid metal cooled reactors, KORSAR/LMR computer code
 Article Text (PDF, in Russian)
 References
  
  - Volkova S.N.,  Benediktov D.V., Vakarin A.V., Danilov I.G., Mitskevich A.V., Popov A.O.,  Yarushina A.V. Razrabotka, verifikatsiya i prakticheskoe  ispol’zovaniye raschetnogo koda KORSAR/ZHMT [Development, verification and  application of the KORSAR/LMR computer code]. Teknologii obespecheniya zhiznennogo tsikla  YAEU – Nuclear  Propulsion reactor plants. Life cycle management technologies, 2021,  no. 2. pp. 25–35. DOI: https://doi.org/10.52069/2414-5726_2021_2_24_25.
- Yudov  Yu.V., Volkova S.N., Migrov Yu.A. Zamykayushiye sootnosheniya  teplogidravlicheskoy modeli raschetnogo koda KORSAR [The closing relationships  of the thermohydraulic model of the KORSAR computer code]. Teploenergetika  – Thermal Engineering, 2002, no. 11, pp. 22–29.
- Kirillov  P.L., Yur’ev Yu.S., Bobkov V.P. Spravoch’nik po gidravlicheskim raschetam [Handbook  of thermohydraulic calculations]. Moscow, Energoatomizdat Publ., 1984.  296 p.
- Subbotin  V.I., Ibragimov M.Kh., Ushakov P.A. et al. Gidrodinamika i teploobmen v  atomnykh energeticheskikh ustanovkakh [Hydrodynamics and heat transfer in  nuclear power plants]. Мoscow, Atomizdat Publ., 1975. 408 p.
- Subbotin  V.I., Gabrianovich B.N., Sheinina A.V. Hydraulic resistance with longitudinal  streamline flow for bundles of plain and finned rods. At Energy,  1972, vol. 33, issue 5, pp. 1031–1034. https://doi.org/10.1007/BF01124603. 
- Zhukov  A.V., Sorokin A.P., Titov P.A., Ushakov P.A. Analiz gidravlicheskogo  soprotivleniya puchkov tvelov bystrykh reaktorov [Analysis of the hydraulic  resistance of fast-reactor fuel-element beam]. Atomnaya energiya – Atomic  Energy, 1986, vol. 60, № 5, pp. 317–321.
- Subbotin  V.I., Ushakov P.A., Gabrianovich B.N., Talanov V.D., Sviridenko I.P. Teploobmen  pri techenii zhidkikh metallov v kruglykh trubakh [Heat transfer during the  flow of liquid metals in round tubes]. Inzhenerno-Fizicheskiy Zhurnal – Engineering and Physics Journal, 1963, vol. 4, no. 4,  pp. 16–21.
- Ushakov  P., Zhukov A., Matyukhin N. Heat transfer to liquid metals in regular arrays of  fuel elements. High Temp., 1977, № 15 (10), pp. 1027–1033.
- Zhukov  A.V., Kuzina Yu.A., Sorokin A.P., Leonov V.N., Smirnov V.P., Sila-Novitskiy  A.G. Eksperimental’noye izucheniye na modelyakh teploobmena v aktivnoy zone  reaktora BREST-OD-300 so svintsovym okhlazhdeniyem [Experimental model study of  heat transfer in the core of BREST-OD-300 lead-cooled reactor]. Teploenergetika – Thermal  Engineering, 2002,  № 3, pp. 2–10.
- Mikityuk K. Heat transfer to liquid  metal: review of data and correlations for tube bundles. Nucl. Eng., 2009,  vol. 239 (4), pp. 680–687.  DOI: https://doi.org/10.1016/j.nucengdes.2008.12.014.
- Dwyer O.E., Tu P.S. Bilateral Heat  Transfer to Liquid Metals Flowing Turbulently Through Annuly. Nuclear  Science and Engineering, 1964, vol. 21, pp. 90–105.  DOI: https://doi.org/10.13182/NSE65-A21018.
- Nigmatulin  B.I. Gidrodinamika i teplofizika statsionarnykh odnomernykh gazo- i parozhidkostnykh  potokov v kanalakh. V kn.: Nigmatulin R.I. Dinamika mnogofaznykh sred [Fluid dynamics and thermal physics of one-dimensional steady-state gas- and  steam-liquid flows in channels. In book: Nigmatulin R.I. Dynamics of multiphase  media]. Мoscow, Nauka  Publ., 1987. 824 p.
- Bestion D. The Physical Closure Laws  in the CATHARE Code. Nuclear Engineering and Design, 1990, no. 124,  pp. 229–245. DOI: https://doi.org/10.1016/0029-5493(90)90294-8.
- RELAP5/MOD3,  Code Manual, Volume IV: Models and Correlations. NUREG/CR-5535-V4. Idaho, 1995.
- Suzuki T., Tobita Y., Kondo S.,  Saito Y., Mishima K. Analysis of gas–liquid metal two-phase flows using a  reactor safety analysis code SIMMER-III. J. Nuclear Engineering and Design,  2003, vol. 220, pp. 207–223. DOI:  https://doi.org/10.1016/S0029-5493(02)00349-7.
- Mikityuk K., Coddington P., Chawla  R. Development of a Drift-flux Model for Heavy Liquid Metal/Gas Flow. J.  Nuclear Science and Technology, 2005, № 7, pp. 600–607. DOI: https://doi.org/10.3327/jnst.42.600.
- Novitrian N., Dostal V., Takahashi  M. Experimental and analytical study of lead-bismuth-water direct contact  boiling two-phase flow. J. Power and Energy Systems, 2007, no. 1, pp.  76–86. DOI: https://doi.org/10.1299/jpes.1.76.
- Loth E. Quasi-steady shape and drag  of deformable bubbles and drops. International Journal of Multiphase Flow, 2008, vol. 34, pp. 523–546.  DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.010.
- Yamada Y., Akashi T., Takahashi M.  Experiment and numerical simulation of bubble behavior in argon gas injection  into Lead-Bismuth pool. J. Power and Energy Systems, 2007, no. 1.  pp. 87–98. DOI: https://doi.org/10.1299/jpes.1.87.
- Clift  R., Gauvin W.H. The motion of particles in turbulent gas steam. British  Chemical Engineering, 1971, vol. 16, p. 229.
- Tomiyama  A., Kataoka I., Zun I., Sakaguchi T. Drag Coefficients of Single Bubbles under  Normal and Micro Gravity Conditions. JSME International Journal Series B  Fluids and Thermal Engineering, 1998, no. 2, pp. 472–479. DOI: https://doi.org/10.1299/jsmeb.41.472.
- Ariyoshi  G. Flow characteristics of lead-bismuth two-phase flow. Dissertation  for the degree of Doctor of Energy Science, 25.03.2019.
- Ariyoshi G., Inatomi R., Ito D.,  Saito Y. Effect of wall wettability condition on drift-flux parameters in  lead–bismuth two-phase flow in circular and annular bubble columns. J.  Nuclear Science and Technology, 2017, vol. 55, pp. 239–253.  DOI: https://doi.org/10.1080/00223131.2017.1394230.
- Benamati G., Foletti C., Forgione  F., Oriolo F., Scaddozzo G., Tarantino M. Experimental study on gas-injection  enhanced circulation performed with the CIRCE facility. J. Nuclear  Engineering and Design, 2007, vol. 237, pp. 768–777. DOI:  https://doi.org/10.1016/j.nucengdes.2006.09.005.
- Satyamurthy P., Dixit N.S.,  Thiyagarajan T.K., Venkatramani N., Quraishi A.M., Mushtaq A. Two-fluid model  studies for high density two-phase liquid metal vertical flows. International  Journal of Multiphase Flow, 1998, vol. 24, pp. 721–737. DOI:  https://doi.org/10.1016/S0301-9322(97)00086-4.
- Mitskevich A.V., Popov A.O., Gritsay  A.S. Analiz zamykayushchikh sootnosheniy po mezhfaznomu treniyu dlya sistem gaz  – TZHMT [Analysis of closing relations for interphase friction for gas – heavy  liquid metal coolant systems]. Tekhnologii obespecheniya zhiznennogo tsikla  YAEU – Technologies for ensuring the life cycle of nuclear power plants,  2021, no. 3, pp. 9–23. DOI: https://doi.org/10.52069/2414-5726_2021_3_25_9.
- Simovic Z.R., Ocokoljic S.,  Stevanovic V.D. Interfacial friction correlations for the two-phase flow across  tube bundle. International Journal of Multiphase Flow, 2007,  no. 33, pp. 217–226. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2006.08.003.
- Ishii M., Hibiki T. et al.  Interfacial area and interfacial transfer in two-phase flow systems. Purdue  University School of Nuclear Engineering, 2002. PU/NE-02-06.
- Kirillov  P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernykh energeticheskikh  ustanovkakh [Heat- and mass-transfer in nuclear power facilities]. Мoscow,  Energoatomizdat Publ., 2000. 455 p.
- Kuznetsov Yu.N. Teploobmen v  probleme bezopasnosti yadernykh reaktorov reaktorov [Heat transfer in  nuclear reactor safety problem]. Мoscow, Energoatomizdat Publ., 1989. 296 p.
- Ozaki T., Hibiki T., Shuichiro M.,  Michitsugu M. Code performance with improved two-group interfacial area  concentration correlation for one-dimensional forced convective two-phase flow  simulation. Journal of Nuclear Science and Technology, 2018,  no. 55, pp. 911–930. DOI: https://doi.org/10.1080/    00223131.2018.1449680.
- Lobanov P.D., Usov E.V., Butov A.A.,  Pribaturin N.A., Mosunova N.A., Strizhov V.F., Chukhno V.I., Kutlimetov  A.E. Experimental investigation of the impulse gas injection into liquid and  the use of experimental data for verification of the HYDRA-IBRAE/LM  thermohydraulic code. Therm. Eng., 2017,  vol. 64, issue 10, pp. 770–776. DOI: https://doi.org/10.1134/S004060151710007X.
- Bernardi  D., Ciampichetti A., Forgione N., Poli F. Analysis of the LBE-water  interaction in the LIFUS 5 facility to support the investigation of a SGTR  event in LFRs. ENEA Report NNFISS-LP3-005, 27.09.2010.
  
UDC 621.039:532.542:004.415
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:13