EDN: GMHNIU
Authors & Affiliations
Mitskevich A.V.1, Popov A.O.1, Volkova S.N.1, Gritsai A.S.1, 2
1 Alexandrov Research Institute of Technology, Sosnovy Bor, Russia
2 Peter the Great St. Petersburg Polytechnic University, Sosnovy Bor, Russia
Mitskevich A.V.1 – Engineer 2d Category.
Popov A.O.1 – Head of Group. Contacts: 72, Koporskoye shosse, Sosnovy Bor, Leningrad region, Russia, 188540. Tel.: +7 (81369) 60-366; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Volkova S.N.1 – Leading Researcher, Cand. Sci. (Tech.).
Gritsai A.S.1, 2 – Head of Department, Senior Lecturer, Department of NPP Design and Operation, Cand. Sci. (Tech.).
Abstract
A problem of current importance is the development of computer codes for safety analysis of nuclear reactors with liquid metal coolant.
In accordance with this, a specialized version of the KORSAR/LMR calculation code was developed that allows for numerical modelling of steady states, transient and emergency modes of LMC reactors.
The validity of numerical simulations greatly depends on the degree of elaboration of a system of closure relations for thermal-hydraulic models in computer codes.
The paper presents flow regime and heat transfer maps used in the KORSAR/LMR calculation code and serving as the basis for a closure relations system in this computer code. An analysis of the correlations for drag and heat transfer coefficients of the walls in channels with different geometries is presented. Closure relations for the two-phase region in the gas – liquid heavy metal coolant system are considered. Closure relations for interphase drag are chosen based on analysis of data in international literature. A modification of selected relations is proposed and the modified relations are validated against available experiment data.
The results of numerical modelling of experiments simulating inter-loop leakage are presented. The obtained results indicate the adequacy of the KORSAR/LMR computer code modeling of processes occurring in the LMC loops.
Keywords
closure relations, liquid metal coolant, computer code, two-phase flow, single-phase flow, interphase drag, interphase heat transfer, wall heat transfer, flow regime maps, heat transfer maps, liquid metal cooled reactors, KORSAR/LMR computer code
Article Text (PDF, in Russian)
References
- Volkova S.N., Benediktov D.V., Vakarin A.V., Danilov I.G., Mitskevich A.V., Popov A.O., Yarushina A.V. Razrabotka, verifikatsiya i prakticheskoe ispol’zovaniye raschetnogo koda KORSAR/ZHMT [Development, verification and application of the KORSAR/LMR computer code]. Teknologii obespecheniya zhiznennogo tsikla YAEU – Nuclear Propulsion reactor plants. Life cycle management technologies, 2021, no. 2. pp. 25–35. DOI: https://doi.org/10.52069/2414-5726_2021_2_24_25.
- Yudov Yu.V., Volkova S.N., Migrov Yu.A. Zamykayushiye sootnosheniya teplogidravlicheskoy modeli raschetnogo koda KORSAR [The closing relationships of the thermohydraulic model of the KORSAR computer code]. Teploenergetika – Thermal Engineering, 2002, no. 11, pp. 22–29.
- Kirillov P.L., Yur’ev Yu.S., Bobkov V.P. Spravoch’nik po gidravlicheskim raschetam [Handbook of thermohydraulic calculations]. Moscow, Energoatomizdat Publ., 1984. 296 p.
- Subbotin V.I., Ibragimov M.Kh., Ushakov P.A. et al. Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh [Hydrodynamics and heat transfer in nuclear power plants]. Мoscow, Atomizdat Publ., 1975. 408 p.
- Subbotin V.I., Gabrianovich B.N., Sheinina A.V. Hydraulic resistance with longitudinal streamline flow for bundles of plain and finned rods. At Energy, 1972, vol. 33, issue 5, pp. 1031–1034. https://doi.org/10.1007/BF01124603.
- Zhukov A.V., Sorokin A.P., Titov P.A., Ushakov P.A. Analiz gidravlicheskogo soprotivleniya puchkov tvelov bystrykh reaktorov [Analysis of the hydraulic resistance of fast-reactor fuel-element beam]. Atomnaya energiya – Atomic Energy, 1986, vol. 60, № 5, pp. 317–321.
- Subbotin V.I., Ushakov P.A., Gabrianovich B.N., Talanov V.D., Sviridenko I.P. Teploobmen pri techenii zhidkikh metallov v kruglykh trubakh [Heat transfer during the flow of liquid metals in round tubes]. Inzhenerno-Fizicheskiy Zhurnal – Engineering and Physics Journal, 1963, vol. 4, no. 4, pp. 16–21.
- Ushakov P., Zhukov A., Matyukhin N. Heat transfer to liquid metals in regular arrays of fuel elements. High Temp., 1977, № 15 (10), pp. 1027–1033.
- Zhukov A.V., Kuzina Yu.A., Sorokin A.P., Leonov V.N., Smirnov V.P., Sila-Novitskiy A.G. Eksperimental’noye izucheniye na modelyakh teploobmena v aktivnoy zone reaktora BREST-OD-300 so svintsovym okhlazhdeniyem [Experimental model study of heat transfer in the core of BREST-OD-300 lead-cooled reactor]. Teploenergetika – Thermal Engineering, 2002, № 3, pp. 2–10.
- Mikityuk K. Heat transfer to liquid metal: review of data and correlations for tube bundles. Nucl. Eng., 2009, vol. 239 (4), pp. 680–687. DOI: https://doi.org/10.1016/j.nucengdes.2008.12.014.
- Dwyer O.E., Tu P.S. Bilateral Heat Transfer to Liquid Metals Flowing Turbulently Through Annuly. Nuclear Science and Engineering, 1964, vol. 21, pp. 90–105. DOI: https://doi.org/10.13182/NSE65-A21018.
- Nigmatulin B.I. Gidrodinamika i teplofizika statsionarnykh odnomernykh gazo- i parozhidkostnykh potokov v kanalakh. V kn.: Nigmatulin R.I. Dinamika mnogofaznykh sred [Fluid dynamics and thermal physics of one-dimensional steady-state gas- and steam-liquid flows in channels. In book: Nigmatulin R.I. Dynamics of multiphase media]. Мoscow, Nauka Publ., 1987. 824 p.
- Bestion D. The Physical Closure Laws in the CATHARE Code. Nuclear Engineering and Design, 1990, no. 124, pp. 229–245. DOI: https://doi.org/10.1016/0029-5493(90)90294-8.
- RELAP5/MOD3, Code Manual, Volume IV: Models and Correlations. NUREG/CR-5535-V4. Idaho, 1995.
- Suzuki T., Tobita Y., Kondo S., Saito Y., Mishima K. Analysis of gas–liquid metal two-phase flows using a reactor safety analysis code SIMMER-III. J. Nuclear Engineering and Design, 2003, vol. 220, pp. 207–223. DOI: https://doi.org/10.1016/S0029-5493(02)00349-7.
- Mikityuk K., Coddington P., Chawla R. Development of a Drift-flux Model for Heavy Liquid Metal/Gas Flow. J. Nuclear Science and Technology, 2005, № 7, pp. 600–607. DOI: https://doi.org/10.3327/jnst.42.600.
- Novitrian N., Dostal V., Takahashi M. Experimental and analytical study of lead-bismuth-water direct contact boiling two-phase flow. J. Power and Energy Systems, 2007, no. 1, pp. 76–86. DOI: https://doi.org/10.1299/jpes.1.76.
- Loth E. Quasi-steady shape and drag of deformable bubbles and drops. International Journal of Multiphase Flow, 2008, vol. 34, pp. 523–546. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.010.
- Yamada Y., Akashi T., Takahashi M. Experiment and numerical simulation of bubble behavior in argon gas injection into Lead-Bismuth pool. J. Power and Energy Systems, 2007, no. 1. pp. 87–98. DOI: https://doi.org/10.1299/jpes.1.87.
- Clift R., Gauvin W.H. The motion of particles in turbulent gas steam. British Chemical Engineering, 1971, vol. 16, p. 229.
- Tomiyama A., Kataoka I., Zun I., Sakaguchi T. Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions. JSME International Journal Series B Fluids and Thermal Engineering, 1998, no. 2, pp. 472–479. DOI: https://doi.org/10.1299/jsmeb.41.472.
- Ariyoshi G. Flow characteristics of lead-bismuth two-phase flow. Dissertation for the degree of Doctor of Energy Science, 25.03.2019.
- Ariyoshi G., Inatomi R., Ito D., Saito Y. Effect of wall wettability condition on drift-flux parameters in lead–bismuth two-phase flow in circular and annular bubble columns. J. Nuclear Science and Technology, 2017, vol. 55, pp. 239–253. DOI: https://doi.org/10.1080/00223131.2017.1394230.
- Benamati G., Foletti C., Forgione F., Oriolo F., Scaddozzo G., Tarantino M. Experimental study on gas-injection enhanced circulation performed with the CIRCE facility. J. Nuclear Engineering and Design, 2007, vol. 237, pp. 768–777. DOI: https://doi.org/10.1016/j.nucengdes.2006.09.005.
- Satyamurthy P., Dixit N.S., Thiyagarajan T.K., Venkatramani N., Quraishi A.M., Mushtaq A. Two-fluid model studies for high density two-phase liquid metal vertical flows. International Journal of Multiphase Flow, 1998, vol. 24, pp. 721–737. DOI: https://doi.org/10.1016/S0301-9322(97)00086-4.
- Mitskevich A.V., Popov A.O., Gritsay A.S. Analiz zamykayushchikh sootnosheniy po mezhfaznomu treniyu dlya sistem gaz – TZHMT [Analysis of closing relations for interphase friction for gas – heavy liquid metal coolant systems]. Tekhnologii obespecheniya zhiznennogo tsikla YAEU – Technologies for ensuring the life cycle of nuclear power plants, 2021, no. 3, pp. 9–23. DOI: https://doi.org/10.52069/2414-5726_2021_3_25_9.
- Simovic Z.R., Ocokoljic S., Stevanovic V.D. Interfacial friction correlations for the two-phase flow across tube bundle. International Journal of Multiphase Flow, 2007, no. 33, pp. 217–226. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2006.08.003.
- Ishii M., Hibiki T. et al. Interfacial area and interfacial transfer in two-phase flow systems. Purdue University School of Nuclear Engineering, 2002. PU/NE-02-06.
- Kirillov P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernykh energeticheskikh ustanovkakh [Heat- and mass-transfer in nuclear power facilities]. Мoscow, Energoatomizdat Publ., 2000. 455 p.
- Kuznetsov Yu.N. Teploobmen v probleme bezopasnosti yadernykh reaktorov reaktorov [Heat transfer in nuclear reactor safety problem]. Мoscow, Energoatomizdat Publ., 1989. 296 p.
- Ozaki T., Hibiki T., Shuichiro M., Michitsugu M. Code performance with improved two-group interfacial area concentration correlation for one-dimensional forced convective two-phase flow simulation. Journal of Nuclear Science and Technology, 2018, no. 55, pp. 911–930. DOI: https://doi.org/10.1080/ 00223131.2018.1449680.
- Lobanov P.D., Usov E.V., Butov A.A., Pribaturin N.A., Mosunova N.A., Strizhov V.F., Chukhno V.I., Kutlimetov A.E. Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRA-IBRAE/LM thermohydraulic code. Therm. Eng., 2017, vol. 64, issue 10, pp. 770–776. DOI: https://doi.org/10.1134/S004060151710007X.
- Bernardi D., Ciampichetti A., Forgione N., Poli F. Analysis of the LBE-water interaction in the LIFUS 5 facility to support the investigation of a SGTR event in LFRs. ENEA Report NNFISS-LP3-005, 27.09.2010.
UDC 621.039:532.542:004.415
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:13