EDN: GLVUJF
Authors & Affiliations
Dolzhenkov E.A.
 
Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia
 
 
 Dolzhenkov E.A. – Researcher. Contacts: 52, Bolshaya Tulskaya st., Moscow, 115191, Russia. Tel.: +7 (916) 461-63-31; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
Boron carbide has a high value of the neutron absorption cross section and is widely used as the absorbing material in the control rods in Russian and Western reactors. Under severe accident conditions, the control rod cladding may fail due to eutectic interactions or cladding material melting and conditions for direct steam access to the remaining part of boron carbide and absorber melt may arise. The importance of boron carbide oxidation by steam is determined by its contribution to the hydrogen source term and fission product source term through the formation of gaseous carbon- and boron-containing compounds, which can affect the chemistry and transport in the primary circuit of some fission products, in particular iodine (gaseous forms) and cesium. The influence of boron carbide oxidation on the atmosphere composition in reactor and containment can increase significantly with using accident tolerant fuel and suppressing the steam zirconium reaction.
The purpose of this work is to adapt a boron carbide oxidation model for simulation of hydrogen and carbon monoxide source at SMR under severe accident conditions.
To demonstrate the correctness of adapted model and its model assumptions, it was validated against BOX experiments on the high-temperature boron carbide oxidation in a steam-argon mixture: the model well describes the dynamics of the hydrogen and carbon monoxide releases at temperatures up to 1200 °C, at higher temperatures – the model overestimates these values.
Keywords
model, oxidation, boron carbide, hydrogen, carbon monoxide, diffusion, control rod, severe accident, development, validation
 Article Text (PDF, in Russian)
 References
  
  - Mitigation  of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants. IAEA-TECDOC-1661.  Vienna: IAEA, 2011.
- Accident  Tolerant Fuel Concepts for Ligth Water Reactors. IAEA-TECDOC-1797.  Vienna: IAEA, 2014.
- Dolzhenkov E.A.,  Ryzhov N.I., Chalyy R.V., Tomashchik D.Yu., Lepehin A.N.,  Kislitsyn D.V. Otsenka vykhoda vodoroda v usloviyakh tyazheloy avarii na  ASMM s RU RITM 200 [Assessment  of hydrogen release under severe accident conditions at a small nuclear power  plant with a RITM 200 reactor]. Trudy KYAE 2022 “Korabel'naya yadernaya energetika. Napravleniya  razvitiya YAEU perspektivnykh ob"yektov Voyenno-Morskogo flota i  Minoborony Rossii. Voprosy obespecheniya ekspluatatsii deystvuyushchikh  korabel'nykh YAEU” [Proc.  of the KNPP 2022 “Naval Nuclear Power. Directions for the Development of  Nuclear Power Plants for Promising Facilities of the Russian Navy and the  Ministry of Defense. Issues of Ensuring the Operation of Existing Naval Nuclear  Power Plants”].  Afrikantov OKBM, Nizhny  Novgorod, October 12–13, 2022, pp. 354–359. 
- Dolzhenkov E.A.,  Ryzhov N.I., Chalyy R.V., Tomashchik D.Yu., Lepehin A.N.,  Kislitsyn D.V. Vykhod vodoroda pri TA na RU RITM 200N za schet protsessov  okisleniya [Hydrogen yield  during а severe accident at NPP RITM 200N due to  oxidation processes]. Trudy  XI Vserossiyskoy molodezhnoy konferentsii “Nauchnyye issledovaniya i  tekhnologicheskiye razrabotki v obespecheniye razvitiya yadernykh tekhnologiy  novogo pokoleniya” [Proc.  of the XI All-Russian Youth Conference “Scientific Research and Technological  Developments to Ensure the Development of New Generation Nuclear Technologies”]. Dimitrovgrad, RIAR, April 17–21,  2023, p. 52.
- Veshchunov M.S.,  Berdyshev A.V., Boldyrev A.V. et al. Modelling of B4C  Oxidation by Steam at High Temperatures  Based on Separate-effects Tests and Its Application to the Bundle Experiment  QUENCH-07. Report FZKA 7118. Forschungszentrum Karlsruhe,  June, 2005. DOI: 10.5445/IR/270061854.
- Steinbruck M., Veshchunov M.S.,  Boldyrev A.V., Shestak V.E. Oxidation of B4C by steam at  high temperatures: New experiments and modelling. Nuclear Engineering and  Design, 2007, vol. 237, pp. 161–181. DOI: 10.1016/j.nucengdes.2006.05.011.  EDN: LKJGYT.
- Steinbruck M.,  Meier A., Stegmaier U., Steinbock L. Experiments on the  Oxidation of Boron Carbide at High Temperatures. Technical Report FZKA-6979,  May, 2004, pp. 1–117. 
- Bolshov L.A.,  Dolganov K.S., Kiselev A.E., Strizhov V.F. Results of SOCRAT  Code Development, Validation and Applications for NPP Safety Assessment under  Severe Accidents. Nuclear Engineering and Design, 2019, vol. 341,  pp. 326–345. DOI: 10.1016/j.nucengdes.2018.11.013.  EDN: VZQFJH.
- FPT3 FINAL REPORT, IP/11/589, DPAM/DIR-2011-206.
- Konings R., Stoller R. Comprehensive  Nuclear Materials. Chapter 2.15. 2nd Edition, 2020.
- Singh P.C., Singh S. Development of  a New Correlation for Binary Gas Phase Diffusion Coefficients. 1983. Int.  Commun. Mass Transf., 1983, vol. 10, p. 123.
- Repetto G,  De Luze O., Seiler N. et al. B4C Oxidation Modelling  in Severe Accident Codes: Applications to PHEBUS and QUENCH experiments. Progress  in Nuclear Energy, 2010, vol. 52, pp. 37–45. DOI: 10.1016/j.pnucene.2009.09.017.  EDN: MZNCJD.
  
UDC 621.039.586
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:15