EDN: MSMICP
Authors & Affiliations
Vertikov E.A., Oleksyuk D.A., Malyutin M.A., Zubkov A.G.
National Research Centre “Kurchatov Institute”, Moscow, Russia
Vertikov E.A. – Engineer. Contacts: 1, pl. Akademika Kurchatova, Moscow, Russia, 123182. Tel.: +7 (985) 191-60-16; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Oleksyuk D.A. – Head of Department, Cand. Sci. (Tech.).
Malyutin M.A. – Engineer.
Zubkov A.G. – Researcher.
Abstract
In Russia and abroad, subchannel codes are the main means for carrying out thermal-hydraulic calculations to substantiate the thermal reliability of the cores of water-cooled nuclear reactors. The paper presents an analysis of sets of closing relations used in various domestic subchannel codes based on a single-fluid model of two-phase coolant flow. It is concluded that there is no generally accepted position regarding the recommended closing relationships for calculating friction coefficients within bundles of rods and transverse turbulent flows. The analysis of problems related to the validation of subchannel codes for various parameters has been carried out: pressure drop across the height of the fuel rod bundle, local values of the coolant velocity and temperature in the cells, as well as local coolant parameters in the two-phase region. It is concluded that there is a lack of the required amount of experimental data on the local characteristics of two-phase flow in rod bundles of triangular geometry. The need for validation of subchannel codes in the region of two-phase coolant flow is shown in order to be able to separate the error in calculating the value of the critical heat flux into components associated with the inaccuracy of the program when calculating local parameters and the inaccuracy of the empirical correlation for determining the value of the critical heat flux.
Keywords
subchannel analysis, rod bundle, local coolant parameters, critical heat flux, validation, VVER
Article Text (PDF, in Russian)
References
- Feng J., Skirpan Z., Baglietto E. Toward industrial applicability of DNB predictions in CFD with improved wall boiling models. Proc. of the 28th International Conference on Nuclear Engineering (ICONE 2020). Virtual, Online, 2020, p. V001T03A002. DOI: 10.1115/ICONE2020-16080.
- Semenovich O.V. Analiz subkanal'nykh modeley termogidrodinamicheskogo raschota sterzhnevykh TVS: klassifikatsiya i tendentsii razvitiya [Analysis of subchannel models of thermohydrodynamic calculation of rod-type fuel assemblies: classification and development trends]. Preprint OIEYAI-Sosny-40 NAN Belarusi – Preprint JIPNR-Sosny-40 NAS of Belarus. Minsk, 2009. 36 p.
- Moorthi A., Sharma A.K., Velusamy K. A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions. Nuclear Engineering and Design, 2018, vol. 332, pp. 329–344. DOI: 10.1016/j.nucengdes.2018.03.012.
- Yang B.W. et al. Subchannel analysis – сurrent practice and development for the future. Nuclear Engineering and Design, 2021, vol. 385, p. 111477. DOI: 10.1016/j.nucengdes.2021.111477.
- Oleksyuk D.A. Razrabotka i eksperimental'noye obosnovaniye programmy dlya poyacheykovogo teplogidravlicheskogo rascheta aktivnykh zon reaktorov tipa VVER. Diss. kand. tekh. nauk [Development and experimental justification of a program for cell-by-cell thermal-hydraulic calculation of active zones of WWER-type reactors. Cand. tech. sci. diss.]. Moscow, 2002. 194 p.
- Kireeva D.R., Oleksuk D.A. Validation of the SC-INT code using experimental data on coolant mixing in a 37-rod fuel assembly with heat exchange intensifying spacer grids. Proc. of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017). Jeju, Korea, 2017. Доступно на: https://www.kns.org/files/int_paper/paper/MC2017_2017_8/P339S08-07KireevaD.pdf (дата обращения 07.02.2025).
- Gushchin E.V., Kolmakov A.P. Programma pokanal'nogo teplogidravlicheskogo rascheta VYAZ-M i nekotorye rezul'taty raschetov [Program for channel-by-channel thermal-hydraulic calculation VYAZ-M and some calculation results]. Sbornik trudov vtoroy Vserossiyskoy nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER” [Proc. of the Second All-Russian scientific and technical conference “Ensuring safety of NPPs with WWER”]. Podolsk, Russia, 2001, vol. 5, pp. 125–131.
- Dragunov Yu.G., Spasskov V.P., Ryzhov S.B et al. Raschyotnoe obosnovanie teplogidravlicheskih harakteristik reaktora i RU VVER [Calculation justification of thermal-hydraulic characteristics of the reactor and WWER reactor plant]. Moscow, Akademkniga Publ., 2004. 340 p.
- Stepanov O.E. et al. Krossverifikatsiya modeli poyacheistogo rascheta TVS koda TIGRSP s primeneniyem CFD koda na primere 7-sterzhnevoy sborki [Cross-verification of the model of cellular calculation of fuel assemblies of the TIGRSP code using the CFD code on the example of a 7-rod assembly]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2016, no. 2, pp. 54–66.
- Samoilov O.B. et al. Eksperimental'nyye issledovaniya teplogidravlicheskikh kharakteristik na modelyakh TVSA VVER-1000 [Experimental studies of thermal-hydraulic characteristics on TVSA WWER-1000 models]. Sbornik trudov chetvertoy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Obespecheniye bezopasnosti AES s VVER” [Proc. of the fourth International Scientific and Technical Conference “Ensuring the safety of NPPs with WWER”]. Podolsk, Russia, 2005, pp. 23–27.
- Kucukboyaci V. et al. Evaluation of VERA-CS Transient Capability for Analyzing the AP1000® Reactor Control Rod Ejection Accident. Proc. of the International Conference on Physics of Reactors (PHYSOR 2018). Cancun, Mexico, 2018, pp. 335–348.
- Zhang K.L., Sanchez-Espinoza V.H. Coupling of TRACE and SubChanFlow based on the Exterior Communication Interface. Progress in Nuclear Energy, 2020, vol. 119, p. 103040. DOI: 10.1016/j.pnucene.2019.103040.
- Zhang K., Sanchez-Espinoza V.H. Optimization and verification of the coupled code TRACE/SubChanFlow using the VVER-1000 coolant mixing benchmark data. Nuclear Engineering and Design, 2019, vol. 353, p. 110238. DOI: 10.1016/j.nucengdes.2019.110238.
- PUCHOK-1000. Certification passport of the program for electronic computers, No. 209 dated 15.05.2017.
- TIGRSP. Certification passport of the program for electronic computers, No. 209 dated 05.12.2022.
- KANAL. Certification passport of the program for electronic computers, No. 273 dated 19.08.2022.
- SC INT. Certification passport of the program for electronic computers, No. 578 dated 31.03.2023.
- Kirillov P.L. et al. Spravochnik po teplogidravlicheskim raschetam [Handbook of thermal hydraulic calculations]. Moscow, Energoatomizdat Publ., 1990. 360 p.
- Altshul A.D. et al. Gidravlicheskiye poteri v vodovodakh elektrostantsiy [Hydraulic losses in water conduits of power plants]. Moscow: Energoatomizdat Publ., 1985. 104 p.
- Ushakov P.A. Raschot gidrodinamicheskikh kharakteristik pri prodol'nom obtekanii zhidkost'yu pravil'nykh reshotok sterzhnevykh tvelov [Calculation of hydrodynamic characteristics for longitudinal liquid flow around regular lattices of rod fuel elements]. Teplofizika vysokikh temperature – High Temperature, 1974, vol. 12, no. 1, pp. 103–110.
- Ibragimov M.K., Isupov I.A., Kobzar' L.L. et al. Calculation of hydraulic resistivity coefficients for turbulent fluid flow in channels of noncircular cross section. At Energy, 1967, vol. 23, issue 4,pp. 1042–1047. DOI: https://doi.org/10.1007/BF01120462.
- Subbotin V.I., Gabrianovich B.N., Sheinina A.V. Hydraulic resistance with longitudinal streamline flow for bundles of plain and finned rods. At Energy, 1972, vol. 33, issue 5, pp. 1031–1034. DOI: https://doi.org/10.1007/BF01124603.
- Osmachkin V.S., Borisov V.D. Gidravlicheskoye soprotivleniye puchkov teplovydelyayushchikh sterzhney v potoke kipyashchey vody [Hydraulic resistance of bundles of fuel rods in a flow of boiling water]. Preprint IAE-1957. Moscow, 1970. 24 p.
- RB-040-09. Raschetnyye sootnosheniya i metodiki rascheta gidrodinamicheskikh i teplovykh kharakteri-stik elementov i oborudovaniya vodookhlazhdayemykh yadernykh energeticheskikh ustanovok [RB-040-09. Calculation relationships and methods for calculating the hydrodynamic and thermal characteristics of elements and equipment of water-cooled nuclear power plants]. Approved by the order of the Federal Service for Ecological, Technological and Nuclear Supervision dated July 20, 2009, No. 641.
- Borisov V.D. Poperechnoye peremeshivaniye teplonositelya v puchkakh sterzhney [Transverse mixing of coolant in rod bundles]. Preprint IAE-3269/5. Moscow, 1980. 28 p.
- Polyanin L.N. Heat and mass transfer of rods in a turbulent liquid. At Energy, 1969, vol. 26, issue 3, p. 308. DOI: https://doi.org/10.1007/BF01162426.
- Weisman J., Bowring R.W. Methods for detailed thermal and hydraulic analysis of water-cooled reactors. Nuclear Science and Engineering, 1975, vol. 57, № 4, pp. 255–276. DOI: 10.13182/NSE75-A15419.
- Bae J.H., Park J.H. Analytical prediction of turbulent friction factor for a rod bundle. Annals of Nuclear Energy, 2011, vol. 38, № 2–3, pp. 348–357. DOI: 10.1016/j.anucene.2010.10.008.
- Palomino L.M., El-Genk M.S. Friction factor correlation for hexagonal bundles of bare tubes/rods and with flat and scalloped walls. Nuclear Engineering and Design, 2019, vol. 353, p. 110230. DOI: 10.1016/j.nucengdes.2019.110230.
- Bogoslovskaya G.P., Kirillov P.L., Loshchinin V.M. et al. Eksperimental'nyye i raschetnyye issledovaniya teploobmena v TVS aktivnoy zony v obosnovaniye effektivnosti i bezopasnosti vodookhlazhdayemykh reaktorov novogo pokoleniya. Teplofizika: sbornik statey k 65-letiyu sozdaniya Teplofizicheskogo otdela FEI [Thermophysics: a collection of articles dedicated to the 65th anniversary of the creation of the Thermophysics Department of IPPE]. Obninsk, 2019, pp. 157–169.
- Zubkov A.G., Oleksyuk D.A., Vertikov E.A. et al. Eksperimental'nyye issledovaniya lokal'nykh parametrov teplonositelya v puchkakh sterzhney na stende KS NITS “Kurchatovskiy institute” i ikh raschetnyy analiz [Experimental studies of local coolant parameters in rod bundles at the KS stand of the NRC “Kurchatov Institute” and their computational analysis]. Materialy XVII Minskogo mezhdunarodnogo foruma po teplomassoobmenu [Proc. of the XVII Minsk International Forum on Heat and Mass Transfer]. Minsk, Belarus, 2024, pp. 841–844.
- Ivanov V.K., Kobzar' L.L. Calculation of hydraulic resistance of clusters of rods with heat-exchange lattice-intensifiers. At Energy, 1980, vol. 49, issue 3, pp. 612–615. DOI: https://doi.org/10.1007/BF01146367.
- Herkenrath H. et al. Experimental investigation of the enthalpy and mass flow distribution in 16-rod clusters with BWR-PWR geometries and conditions. Joint Research Centre of the European Communities. Italy, 1981. EUR 7575 EN.
- NUPEC BWR Full-size Fine-mesh Bundle Test BFBT Benchmark: Volume III: Results of Phase I on Void Distribution. OECD Nuclear Energy Agency, 2021. NEA/NSC/R(2020)6.
- Angeli D., Fregni A., Stalio E. Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D= 1.4. Nuclear Engineering and Design, 2019, vol. 355, p. 110320. DOI: 10.1016/j.nucengdes.2019.110320.
- Sergeenko K. Adaptation of the turbulence model to the heat transfer in a rod bundle. Nuclear Engineering and Design, 2023, vol. 415, p. 112664. DOI: 10.1016/j.nucengdes.2023.112664.
- Kobzar L.L., Oleksyuk D.A., Semchenkov Y.M. Experimental and computational investigations of heat and mass transfer of intensifier grids. Kerntechnik, 2015, vol. 80, no. 4, pp. 349–358. DOI: 10.3139/124.110508.
- Polyakov V.K., Polyakov R.E., Smolin V.N. et al. Izmereniye raskhodov i teplosoderzhaniy teplonositelya v yacheykakh sterzhnevoy sborki [Measurement of coolant flow rates and heat contents in rod assembly cells]. Sbornik dokladov seminara SEV “Teplofizika-86: Teplotekhnicheskaya bezopasnost' yadernykh reaktorov VVER” [Proc. of the CMEA Seminar “Thermal Physics-86: Thermal Safety of WWER Nuclear Reactors”]. Rostock, GDR, 1986, pp. 171–183.
- Sadatomy M., Kawahara A., Sato Y. Prediction of the single-phase turbulent mixing rate between two parallel subchannels using a subchannel geometry factor. Nuclear Engineering and Design, 1996, vol. 162, pp. 245–256. DOI: 10.1016/0029-5493(95)01129-3.
UDC 621.039.534...23
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 1, 1:20