Authors & Affiliations
Zakharov M.Yu., Tikhomirov G.V.
National Research Nuclear University “MEPhI”, Moscow, Russia
Zakharov M.Yu. – Postgraduate Student. Contacts: 31, Kashirskoe shosse, Moscow, Russian Federation, 115409. Tel.: +7 (911) 480-47-10; e-mail:
Tikhomirov G.V. – Deputy Director Institute of Nuclear Physics and Engineering, Professor, Dr. Sci.(Phys.-Math.).
Abstract
Currently, fast reactors with liquid metal coolant represent the most widespread technology among Generation IV nuclear reactors. These systems offer improved nuclear fuel utilization, the potential for nuclear waste transmutation, and a fundamental opportunity for closing the nuclear fuel cycle. However, this technology is still in the stage of active deployment, and one of the key challenges lies in understanding the behavior of liquid metal within reactor circuits. Of particular interest is the modeling of heat transfer in the reactor core, which consists of numerous fuel assemblies. Computational Fluid Dynamics (CFD) simulations not only reproduce experimental results but also provide additional insights beyond what experiments can capture. This paper presents a systematic review of current approaches and findings in thermal-hydraulic modeling of fuel assemblies for fast reactors using CFD techniques. RANS, LES, and DNS approaches are analyzed in terms of their ability to resolve turbulence, capture the anisotropy of liquid metal flow, and meet computational requirements (e.g., mesh). Attention is given to the treatment of heat transfer peculiarities in liquid metals. The impact of accurately modeling the wire spacer on simulation outcomes is demonstrated. Contemporary methods for describing turbulent heat fluxes in RANS and LES models are discussed. Various turbulence models are compared. Issues related to the scaling of small-bundle results to full-size fuel assemblies are addressed. The paper summarizes current trends and results in CFD modeling of fast reactor fuel assemblies, both with and without wire spacers. The findings may serve as a foundation for selecting optimal modeling strategies in the design and analysis of fast reactor cores.
Keywords
fast reactors, fuel assemblies, fuel assemblies, computational fluid dynamics, CFD, RANS, LES, DNS, modeling, liquid metal, lead, sodium, heat transfer, turbulence, review
Article Text (PDF, in Russian)
- Veselov F.V., Makarova A.S., Novikova T.V., Tolstoukhov D.A., Atnyukova P.V. Konkurentnye perspektivy AES v formirovanii nizkouglerodnogo profilya rossiyskoy elektroenergetiki [Competitive perspectives of NPPs in shaping the low-carbon profile of the Russian power industry]. Energeticheskaya politika – Energy policy, 2017, no. 3, pp. 68–77.
- Fillipov S.P. Transition to a Carbon Neutral Economy: Opportunities and Limitations, Current Challenges. Thermal Engineering, 2024, no. 1, pp. 18–35. DOI: https://doi.org/10.1134/S0040601524010038.
- Suhareva E.V., Shindina T.A., Rukina E.I. Sravnitel'nyy analiz preimushchestv i riskov atomnoy energetiki v kontekste obespecheniya energeticheskoy bezopasnosti [Comparative analysis of benefits and risks of nuclear power in the context of ensuring energy security]. Ekonomika i upravlenie: problemy, resheniya – Economy and management: problems, solutions, 2024, vol. 9, no. 6 (147), pp. 73–79. DOI: https://doi.org/10.36871/ek.up.p.r.2024.06.09.008.
- Nuclear Power in the World Today – World Nuclear Association. Available at: https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today (accessed 19.05.2025).
- Bozkaya Ş., Onifade S.T., Duran M.S. Nuclear energy utilization and the expectations of emission-reduction gains: Nuclear energy utilization and the expectations of emission-reduction gains: Empirical evidence from economic trajectory of selected utilizing states. Progress in Nuclear Energy, 2025, vol. 178. p. 105526. DOI: https://doi.org/10.1016/j.pnucene.2024.105526.
- Adamov E.O., Kaplienko A.V., Orlov V.V., Smirnov V.S., Lopatkin A.V., Lemekhov V.V., Moiseev A.V. Brest Lead-Cooled Fast Reactor: From Concept to Technological Implementation. Atomic Energy, 2021, vol. 129, no. 4, pp. 179–187. DOI: https://doi.org/10.1007/s10512-021-00731-w.
- Tuzov A.A., Troyanov V.M., Gulevich A.V., Gurskaya O.S., Dekusar V.M., Moseev A.L., Simonenko V.A. The Initial Stage of Closing the NFC of the Russian Two-Component Nuclear Power Engineering System. Atomic Energy, 2022, vol. 133, no. 2, pp. 72–78.
- Troyanov V.M., Gulevich A.V., Gurskaya O.S., Dekusar V.M., Eliseev V.A., Korobeynikov V.V., Moseev A.L. Sistemnye vozmozhnosti bystrykh natrievykh reaktorov v dvukhkomponentnoy yadernoy energetike [System Features of Fast Sodium Reactors in a Two-Component Structure of Nuclear Power Generating]. Izvestiya vuzov. Yadernaya Energetika, 2024, no. 1, pp. 5–17. DOI: https://doi.org/10.26583/npe.2024.1.01.
- Agbevanu K.T., Debrah S.K., Arthur E.M., Shitsi E. Liquid metal cooled fast reactor thermal hydraulic research development: A review. Heliyonm, 2023, vol. 9, no. 6, p. e16580. DOI: https://doi.org/10.1016/j.heliyon.2023.e16580.
- Kuzina Yu.A., Sorokin A.P. Aktual'nye voprosy modelirovaniya teplogidravlicheskikh protsessov v reaktorakh na bystrykh neytronakh [Actual Problems of Thermal-Hydraulic Modelling in Fast Neutron Reactors]. Izvestiya vuzov. Yadernaya Energetika, 2024, no. 2, pp. 41–58. DOI: https://doi.org/10.26583/npe.2024.2.04.
- Vasilenko V.A., Migrov Yu.A., Volkova S.N., Yudov Yu.V., Danilov I.G., Korotaev V.G., Kut'in V.V., Bondarchik B.R., Benediktov D.V. Opyt sozdaniya i osnovnye kharakteristiki teplogidravlicheskogo raschetnogo koda novogo pokoleniya KORSAR [Experience of creation and main characteristics of the new generation thermal-hydraulic calculation code KORSAR]. Teploenergetika – Thermal Eng., 2002, no. 11, pp. 11–16.
- Mosunova N.A., Alipchenkov V.M., Pribaturin N.A., Strizhov V.F., Usov E.V., Lobanov P.D, Afremov D.A., Semchenkov A.A., Larin I.A. Lead coolant modeling in system thermal-hydraulic code HYDRA-IBRAE/LM and some validation results. Nuclear Engineering and Design, 2020, vol. 359, p. 110463. DOI: https://doi.org/10.1016/j.nucengdes.2019.110463.
- Schöffel P. et al. ATHLET 3.4.0 User’s Manual, 2023. Available at: https://www.researchgate.net/publication/376751822_ATHLET_340_User's_Manual (accessed 19.05.2025).
- Mesina G.L. A History of RELAP Computer Codes. Nuclear Science and Engineering, 2016, vol. 182, no. 1, pp. V–IX. DOI: https://doi.org/10.13182/NSE16-A38253.
- Asmolov V.G., Blinkov V.N., Melikhov V.I. et al. Current state of system thermohydraulic codes and trends in their development abroad. High Temperature, 2014, vol. 52, no. 1, pp. 98–109. DOI: https://doi.org/10.1134/S0018151X14010027.
- Vasilenko V.A., Migrov Yu.A., Semakin S.G., Kasterin D.S., Mickevich A.V. Napravleniya razvitiya sistemnyh teplogidravlicheskih raschyotnyh kodov novogo pokoleniya [Directions of development of system thermal-hydraulic calculation codes of new generation]. Tekhnologii obespecheniya zhiznennogo tsikla yadernykh energeticheskikh ustanovok – Technologies for ensuring the life cycle of nuclear power plants, 2022, no. 1 (27), pp. 54–72. DOI: https://doi.org/10.52069/2414-5726_2022_1_27_54.
- Pucciarelli A., Toti A., Castelliti D. et al. Coupled system thermal Hydraulics/CFD models: General guidelines and applications to heavy liquid metals. Annals of Nuclear Energy, 2021, vol. 153, p. 107990. DOI: https://doi.org/10.1016/j.anucene.2020.107990.
- Zhang K. The multiscale thermal‐hydraulic simulation for nuclear reactors: A classification of the coupling approaches and a review of the coupled codes. International Journal of Energy Research, 2020, vol. 44, no. 5, pp. 3295–3315. DOI: https://doi.org/10.1002/er.5111.
- Liu J., Song P., Zhang D. et al. Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer. Nuclear Engineering and Technology, 2022, vol. 54, no. 7, pp. 2728–2735. DOI: https://doi.org/10.1016/j.net.2022.01.026.
- Chandra L., Roelofs F., Houkema M. et al. A stepwise development and validation of a RANS based CFD modelling approach for the hydraulic and thermal-hydraulic analyses of liquid metal flow in a fuel assembly. Nuclear Engineering and Design, 2009, vol. 239, no. 10, pp. 1988–2003. DOI: https://doi.org/10.1016/j.nucengdes.2009.05.022.
- Manservisi S., Menghini F. A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals. International Journal of Heat and Mass Transfer, 2014, vol. 69, pp. 312–326. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017.
- Sorokin A.P., Kuzina Yu.A., Orlov A.I. Eksperimental'noe modelirovanie protsessov gidrodinamiki i teploobmena v reaktorakh s tyazhelymi zhidkometallicheskimi teplonositelyami [Experimental modeling of hydrodynamics and heat transfer in reactors with heavy liquid metal coolants]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of atomic science and technology. Series: Nuclear and Reactor Constants, 2019, no. 1, pp. 21–51.
- Bestion D. The structure of system thermal-hydraulic (SYS-TH) code for nuclear energy applications. Thermal-Hydraulics of Water Cooled Nuclear Reactors. Woodhead Publishing, 2017. Pp. 639–727. DOI: https://doi.org/10.1016/B978-0-08-100662-7.00011-7.
- Sorokin A.P., Kuzina Yu.A., Denisova N.A. Gidrodinamika i teploobmen v TVS aktivnoy zony bystrykh reaktorov s spiral'nymi provolochnymi navivkami na tvelakh [Hydrodynamics and heat transfer in fast reactor core fuel assemblies with spiral wire-wraps on fuel pins]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of atomic science and technology. Series: Nuclear and Reactor Constants, 2022, no. 1, pp. 189–209.
- Deck S., Gand F., Brunet V., Ben Khelil S. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. DOI: https://doi.org/10.1098/rsta.2013.0325.
- Snegirev A.Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoy fizike. Chislennoe modelirovanie turbulentnykh techeniy: uchebnoe posobie dlya studentov vysshikh uchebnykh zavedeniy, obuchayushchikhsya po napravleniyu podgotovki 140400 “Tekhnicheskaya fizika” [High-performance computing in technical physics. Numerical modeling of turbulent flows: textbook for students of higher educational institutions, studying in the direction of training 140400 “Technical Physics”]. Sankt-Peterburg, Izd-vo Politekhn. Un-ta Publ., 2008. 143 p. Available at: https://cfd.spbstu.ru/agarbaruk/doc/2009_snegirev_vysokoproizvoditelnye-vychisleniya-v-tekhnicheskoj-fizike-chislennoe-modelirovanie-turbulentnyh-techenij.pdf (accessed 19.05.2025).
- Fornberg B. A Practical Guide to Pseudospectral Methods: Cambridge Monographs on Applied and Computational Mathematics. Cambridge: Cambridge University Press, 1996.
- Shams A., Roelofs F., Komen E.M.J., Baglietto E. Optimization of a pebble bed configuration for quasi-direct numerical simulation. Nuclear Engineering and Design, 2012, vol. 242, pp. 331–340. DOI: https://doi.org/10.1016/j.nucengdes.2011.10.054.
- Komen E., Shams A., Camilo L., Koren B. Quasi-DNS capabilities of OpenFOAM for different mesh types. Computers & Fluids, 2014, vol. 96, pp. 87–104. DOI: https://doi.org/10.1016/j.compfluid.2014.02.013.
- Trane D., Grespan M., Angeli D. Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle. Journal of Physics: Conference Series, 2024, vol. 2766, no. 1, p. 012009. DOI: https://doi.org/10.1088/1742–6596/2766/1/012009.
- Ambekar, Schwarzmeier C., Rüde U., Buwa V.V. Particle‐resolved turbulent flow in a packed bed: RANS, LES, and DNS simulations. AIChE Journal, 2023, vol. 69, no. 1, p. e17615. DOI: https://doi.org/10.1002/aic.17615.
- Hami K. Turbulence Modeling a Review for Different Used Methods. International Journal of Heat & Technology, 2021, vol. 39, no. 1, pp. 227–234. DOI: https://doi.org/10.18280/ijht.390125.
- Qin S., Yang Y., Huang Y., Mei X. et al. Is a direct numerical simulation (DNS) of Navier – Stokes equations with small enough grid spacing and time-step definitely reliable/correct? Journal of Ocean Engineering and Science, 2024, vol. 9, no. 3, pp. 293–310. DOI: https://doi.org/10.1016/j.joes.2024.04.002.
- Katkovskii S.E. O neobkhodimosti verifikatsii i validatsii metodov pryamogo chislennogo modelirovaniya vychislitel'noy gidrodinamiki [On the need of verification and validation of computational fluid dynamics direct numerical simulation methods]. Yadernaya i radiatsionnaya bezopasnost' – Nuclear and Radiation Safety, 2021, no. 3 (101), pp. 16–25.
- Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 1963, vol. 91, no. 3, pp. 99–164. DOI: https://doi.org/10.1175/1520–0493(1963)091<0099:GCEWTP>2.3.CO;2.
- Kim M., Lim J., Kim S., Jee S., Park D. Assessment of the wall-dapting local eddy-viscosity model in transitional boundary layer. Computer Methods in Applied Mechanics and Engineering, 2020, vol. 371, p. 113287. DOI: https://doi.org/10.1016/j.cma.2020.113287.
- Volkov K.N., Emelyanov V.N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy [Modeling of large vortices in calculations of turbulent flows]. Moscow, FIZMATLIT Publ., 2008. 368 p.
- Spalart P.R. Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252–263. DOI: https://doi.org/10.1016/S0142-727X(00)00007-2.
- Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. of The Royal Society A: Mathematical, Physical And Engineering Sciences. London, 1995. DOI: https://doi.org/10.1098/rspa.1995.0116.
- Wilcox D. Turbulence Modeling for CFD, La Canada: DCW Industries, 2006. 515 p. Available at: https://cfd.spbstu.ru/agarbaruk/doc/2006_Wilcox_Turbulence-modeling-for-CFD.pdf (accessed 19.05.2025).
- Schmitt F.G. About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique, 2007, vol. 335, no. 9, pp. 617–627. DOI: https://doi.org/10.1016/j.crme.2007.08.004.
- Launder B., Spalding D. Lectures in mathematical models of turbulence. London, academic Press, 1972. 175 p.
- Menter F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. Proc. Of 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference: Fluid Dynamics and Co-located Conferences. Orlando, FL, USA, 1993. DOI: https://doi.org/10.2514/6.1993-2906.
- Launder B.E., Reece G.J., Rodi W. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 1975, vol. 68, no. 3, pp. 537–566. DOI: https://doi.org/10.1017/S0022112075001814.
- Larsson J., Kawai S., Bodart J., Bermejo-Moreno I. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 2016, vol. 3, no. 1, pp. 15–00418. DOI: https://doi.org/10.1299/mer.15-00418.
- Bose S.T., Park G.I. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annual Review of Fluid Mechanics, 2018, vol. 50, pp. 535–561. DOI: https://doi.org/10.1146/annurev-fluid-122316-045241.
- Heinz S. Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoretical and Computational Fluid Dynamics, 2007, vol. 21, no. 2, pp. 99–118. DOI: https://doi.org/10.1007/s00162-006-0036-8.
- Kozelkov A.S., Kurulin V.V., Tyatyushkina E.S., Puchkova O.L. Modelirovanie turbulentnykh techeniy vyazkoy neszhimaemoy zhidkosti na nestrukturirovannykh setkakh s ispol'zovaniem modeli otsoedinennykh vikhrey [Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids]. Matematicheskoe modelirovanie – Mathematical Models and Computer Simulations, 2014, vol. 26, no. 8, pp. 81–96.
- Spalart P.R., Deck S., Shur M.L. et al. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 2006, vol. 20, no. 3, pp. 181–195. DOI: https://doi.org/10.1007/s00162-006-0015-0.
- Shur M.L. An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows. Flow, Turbulence and Combustion, 2015, vol. 95, no. 4, pp. 709–737. DOI: https://doi.org/10.1007/s10494-015-9618-0.
- He Y., Li Q., Wang Y., Tang G. Lattice Boltzmann method and its applications in engineering thermophysics. Chinese Science Bulletin, 2009, vol. 54, no. 22, pp. 4117–4134. DOI: https://doi.org/10.1007/s11434-009-0681-6.
- Sagaut P. Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations: Mesoscopic Methods in Engineering and Science. Computers & Mathematics with Applications, 2010, vol. 59, no. 7, pp. 2194–2199. DOI: https://doi.org/10.1016/j.camwa.2009.08.051.
- Chen S., Xia Z., Pei S. et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics, 2012, vol. 703, pp. 1–28. DOI: https://doi.org/10.1017/jfm.2012.150.
- Xu Q., Yang Y. Reynolds stress constrained large eddy simulation of separation flows in a U-duct. Propulsion and Power Research, 2014, vol. 3, no. 2, pp. 49–58. DOI: https://doi.org/10.1016/j.jppr.2014.05.002.
- Zhao Y., Xia Z., Shi Y. et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Physics of Fluids, 2014, vol. 26, no. 9, p. 095103. DOI: https://doi.org/10.1063/1.4895589.
- Girimaji S.S. Partially-Averaged Navier – Stokes Model for Turbulence: A Reynolds-Averaged Navier – Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 2005, vol. 73, no. 3, pp. 413–421. DOI: https://doi.org/10.1115/1.2151207.
- Girimaji S.S., Jeong E., Srinivasan R. Partially Averaged Navier – Stokes Method for Turbulence: Fixed Point Analysis and Comparison With Unsteady Partially Averaged Navier – Stokes. Journal of Applied Mechanics, 2005, vol. 73, no. 3, pp. 422–429. DOI: https://doi.org/10.1115/1.2173677.
- Menter F.R., Egorov Y. Scale Adaptive Simulation Model using Two-Equation Models. Proc. Of 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005. DOI: https://doi.org/10.2514/6.2005-1095.
- Menter F.R., Egorov Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow, Turbulence and Combustion, 2010, vol. 85, no. 1, pp. 113–138. DOI: https://doi.org/10.1007/s10494-010-9264-5.
- Adamian D.Yu., Strelets M.Kh., Travin A.K. Effektivnyy metod generatsii sinteticheskoy turbulentnosti na vkhodnykh granitsakh LES oblasti v ramkakh kombinirovannykh RANS-LES podkhodov k raschetu turbulentnykh techeniy [An efficient method of synthetic turbulence generation at LES inflow in zonal RANS-LES approaches to computation of turbulent flows]. Matematicheskoe modelirovanie – Mathematical Models and Computer Simulations, 2011, vol. 23, no. 7, pp. 3–19.
- Shur M.L., Spalart P.R., Strelets M.K., Travin A.K. Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow, Turbulence and Combustion, 2014, vol. 93, no. 1, pp. 63–92. DOI: https://doi.org/10.1007/s10494-014-9534–8.
- Kozelkov A.S., Krutyakova O.L., Kurkin A.A., Kurulin V.V., Tyatyushkina E.S. Zonal RANS-LES approach based on an algebraic Reynolds stress model. Fluid Dynamics, 2015, vol. 50, no. 5, pp. 621–628. DOI: https://doi.org/10.1134/S0015462815050038.
- Grötzbach G. Challenges in low-Prandtl number heat transfer simulation and modelling. Nuclear Engineering and Design, 2013, vol. 264, pp. 41–55. DOI: https://doi.org/10.1016/j.nucengdes.2012.09.039.
- Roelofs F., Shams A., Otic I. et al. Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows. Nuclear Engineering and Design, 2015, vol. 290, pp. 99–106. DOI: https://doi.org/10.1016/j.nucengdes.2014.11.006.
- Kirillov P.L. Heat Exchange in Turbulent Flow. Part 1. Turbulent Prandtl Numbe. Atomic Energy, 2017, vol. 122, issue 3, pp. 156–171. DOI: https://doi.org/10.1007/s10512-017-0251-y.
- Aoki S. A consideration on the heat transfer in liquid metal. Bulletin of the Tokyo Institute of Technology, 1963, no. 54.
- Reynolds A.J. The prediction of turbulent Prandtl and Schmidt numbers. International Journal of Heat and Mass Transfer, 1975, vol. 18, no. 9, pp. 1055–1069. DOI: https://doi.org/10.1016/0017–9310(75)90223-9.
- Jischa M., Rieke H.B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 1979, vol. 22, no. 11, pp. 1547–1555. DOI: https://doi.org/10.1016/0017-9310(79)90134-0.
- Kays W.M. Turbulent Prandtl Number – Where Are We? Journal of Heat Transfer, 1994, vol. 116, no. 2, pp. 284–295. DOI: https://doi.org/10.1115/1.2911398.
- Weigand B., Ferguson J.R., Crawford M.E. An extended Kays and Crawford turbulent Prandtl number model. International Journal of Heat and Mass Transfer, 1997, vol. 40, no. 17, pp. 4191–4196. DOI: https://doi.org/10.1016/S0017-9310(97)00084-7.
- Cheng X., Tak N.I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications. Nuclear Engineering and Design, 2006, vol. 236, no. 4, pp. 385–393. DOI: https://doi.org/10.1016/j.nucengdes.2005.09.006.
- Cheng X., Tak N.I. CFD analysis of thermal-hydraulic behavior of heavy liquid metals in sub-channels. Nuclear Engineering and Design, 2006, vol. 236, no. 18, pp. 1874–1885. DOI: https://doi.org/10.1016/j.nucengdes.2006.02.001.
- Rogozhkin S.A., Aksenov A.A., Zhluktov S.V., Osipov S.L., Sazonova M.L., Fadeev I.D., Shepelev S.F., Shmelev V.V. Razrabotka modeli turbulentnogo teploperenosa dlya zhidkometallicheskogo natrievogo teplonositelya i ee verifikatsiya [Development and verification of a turbulent heat transport model for sodium-based liquid metal coolants]. Vychislitel'naya mekhanika sploshnykh sred – Computational Continuum Mechanics,2014, vol. 7, no. 3, pp. 306–316. DOI: https://doi.org/10.7242/1999-6691/2014.7.3.30.
- Nagano Y., Kim C. A Two-Equation Model for Heat Transport in Wall Turbulent Shear Flows. Journal of Heat Transfer, 1988, vol. 110, no. 3, pp. 583–589. DOI: https://doi.org/10.1115/1.3250532.
- Sommer T.P., So R.M.C., Lai Y.G. A near-wall two-equation model for turbulent heat fluxes. Journal of Heat and Mass Transfer, 1992, vol. 35, no. 12, pp. 3375–3387. DOI: https://doi.org/10.1016/0017-9310(92)90224-G.
- Zaitsev D.K., Smirnov E.M. Metod rascheta turbulentnogo chisla Prandtlya dlya SST-modeli turbulentnosti [Method of calculation of turbulent Prandtl number for the SST turbulence model]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki – St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2019, vol. 12, no. 1, pp. 39–49. DOI: https://doi.org/10.18721/JPM.12103.
- Sergeenko K. Adaptation of the turbulence model to the heat transfer in a rod bundle. Nuclear Engineering and Design, 2023, vol. 415, p. 112664. DOI: https://doi.org/10.1016/j.nucengdes.2023.112664.
- Daly B.J., Harlow F.H. Transport Equations in Turbulence. The Physics of Fluids, 1970, vol. 13, no. 11, pp. 2634–2649. DOI: https://doi.org/10.1063/1.1692845.
- Kenjereš S., Gunarjo S.B., Hanjalić K. Contribution to elliptic relaxation modelling of turbulent natural and mixed convection. International Journal of Heat and Fluid Flow, 2005, vol. 26, no. 4, pp. 569–586. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2005.03.007.
- Shams A., Santis A. De, Roelofs F. An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number. Nuclear Engineering and Design, 2019, vol. 355, p. 110342. DOI: https://doi.org/10.1016/j.nucengdes.2019.110342.
- Shin J.K., An J.S., Choi Y.D. et al. Elliptic relaxation second moment closure for the turbulent heat fluxes. Journal of Turbulence, 2008, vol. 9. DOI: https://doi.org/10.1080/14685240701823101.
- Manceau R. Recent progress in the development of the Elliptic Blending Reynolds-stress model. International Journal of Heat and Fluid Flow, 2015, vol. 51, pp. 195–220. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2014.09.002.
- Grötzbach G. Numerical simulation of turbulent temperature fluctuations in liquid metals. International Journal of Heat and Mass Transfer, 1981, vol. 24, no. 3, pp. 475–490. DOI: https://doi.org/10.1016/0017-9310(81)90055-7.
- Grötzbach G. Revisiting the resolution requirements for turbulence simulations in nuclear heat transfer. Nuclear Engineering and Design, 2011, vol. 241, no. 11, pp. 4379–4390. DOI: https://doi.org/10.1016/j.nucengdes.2010.12.027.
- Roelofs F. Thermal hydraulics aspects of liquid metal cooled nuclear reactors. Woodhead Publishing, 2018. 438 p.
- Sorokin A.P., Kuzina Yu.A., Denisova N.A. Gidrodinamika turbulentnykh potokov v TVS bystrykh reaktorov (pole skorosti i mikrostruktura turbulentnosti) [Hydrodynamics of turbulent flow in a fast reactor fuel assemblies (velocity field and microstructure of turbulence)]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, no. 2, pp. 139–166.
- Grötzbach G. Anisotropy and Buoyancy in Nuclear Turbulent Heat Transfer: Critical Assessment and Needs for Modelling. Forschungszentrum Karlsruhe FZKA. 2007. 64 p. Available at: https://edocs.tib.eu/files/e01fn08/569326540.pdf (accessed 19.05.2025).
- Baglietto E., Ninokata H. A turbulence model study for simulating flow inside tight lattice rod bundles. Nuclear Engineering and Design, 2005, vol. 235, no. 7, pp. 773–784. DOI: https://doi.org/10.1016/j.nucengdes.2004.10.007.
- Chang D., Tavoularis S. Numerical simulation of turbulent flow in a 37-rod bundle. Nuclear Engineering and Design, 2007, vol. 237, no. 6, pp. 575–590. DOI: https://doi.org/10.1016/j.nucengdes.2006.08.001.
- Chandra L., Roelofs. F. CFD analyses of liquid metal flow in sub-channels for Gen IV reactors. Nuclear Engineering and Design, 2011, vol. 241, no. 11, pp. 4391–4403. DOI: https://doi.org/10.1016/j.nucengdes.2011.01.023.
- Speziale C.G., Sarkar S., Gatski T.B. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of fluid mechanics, 1991, vol. 227, pp. 245–272. DOI: https://doi.org/0.1017/S0022112091000101.
- Lee Y., Ferng Y., Wang J.R., Shih C. Fuel Rod Surface Temperature Distributions in Liquid Metal Sub-channel Flows. Proc. of 19th International Conference on Nuclear Engineering. Chiba, Japa, 2011. Available at: https://www.academia.edu/download/75919941/_pdf.pdf (accessed 19.05.2025).
- Govindha Rasu N., Velusamy K., Sundararajan T., Chellapandi P. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium. Annals of Nuclear Energy, 2013, vol. 55, pp. 29–41. DOI: https://doi.org/10.1016/j.anucene.2012.12.007.
- Merzari E., Ninokata H., Bagileto E. Numerical simulation of flows in tight-lattice fuel bundles. Nuclear Engineering and Design, 2008, vol. 238, no. 7, pp. 1703–1719. DOI: https://doi.org/10.1016/j.nucengdes.2008.01.001.
- Yu Y.Q., Yan B.H., Cheng X., Gu, H.Y. Simulation of turbulent flow inside different subchannels in tight lattice bundle. Annals of Nuclear Energy, 2011, vol. 38, no. 11, pp. 2363–2373. DOI: https://doi.org/10.1016/j.anucene.2011.07.018.
- Yan B.H., Gu H.Y., Yu. L. Numerical simulation of the coherent structure and turbulent mixing in tight lattice. Progress in Nuclear Energy, 2012, vol. 54, no. 1, pp. 81–95. DOI: https://doi.org/10.1016/j.pnucene.2011.07.008.
- Shams A., Kwiatkowski T. Towards the Direct Numerical Simulation of a closely-spaced bare rod bundle. Annals of Nuclear Energy, 2018, vol. 121, pp. 146–161. DOI: https://doi.org/10.1016/j.anucene.2018.07.022.
- Mikuž B., Shams. A. Assessment of RANS models for flow in a loosely spaced bare rod bundle with heat transfer in low Prandtl number fluid. Annals of Nuclear Energy, 2019. vol. 124, pp. 441–459. DOI: https://doi.org/10.1016/j.anucene.2018.10.017.
- Hooper J.D., Rehme K. Large-scale structural effects in developed turbulent flow through closely-spaced rod arrays. Journal of Fluid Mechanics, 1984, vol. 145, pp. 305–337. DOI: https://doi.org/10.1017/S0022112084002949.
- Krauss T., Meyer L. Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle. Nuclear Engineering and Design, 1998, vol. 180, no. 3, pp. 185–206. DOI: https://doi.org/10.1016/S0029-5493(98)00158-7.
- Ikeno T., Kajishima T. Analysis of dynamical flow structure in a square arrayed rod bundle. Nuclear Engineering and Design, 2010, vol. 240, no. 2, pp. 305–312. DOI: https://doi.org/10.1016/j.nucengdes.2008.07.012.
- Tzanos C.P., Popov M., Mendonca F. Large Eddy Simulation of Turbulence in a Rod Cluster. Nuclear Technology, 2011, vol. 173, no. 3, pp. 239–250. DOI: https://doi.org/10.13182/NT11-A11659.
- Shams A., Mikuž B., Roelofs F. Numerical prediction of flow and heat transfer in a loosely spaced bare rod bundle. International Journal of Heat and Fluid Flow, 2018, vol. 73, pp. 42–62. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2018.07.006.
- Yu Y., Shemon E., Merzari E. LES simulation on heavy liquid metal flow in a bare rod bundle for assessment of turbulent Prandtl number. Nuclear Engineering and Design, 2023, vol. 404, p. 112175. DOI: https://doi.org/10.1016/j.nucengdes.2023.112175.
- Vonka V. Turbulent transports by secondary flow vortices in a rod bundle. Nuclear Engineering and Design, 1988, vol. 106, no. 2, pp. 209–220. DOI: https://doi.org/10.1016/0029-5493(88)90278-6.
- Choueiri G.H., Tavoularis S. Experimental investigation of flow development and gap vortex street in an eccentric annular channel. Part 2. Effects of inlet conditions, diameter ratio, eccentricity and Reynolds number. Journal of Fluid Mechanics, 2015, vol. 768, pp. 294–315. DOI: https://doi.org/10.1017/jfm.2015.90.
- Merzari E., Obabko A., Fischer P. et al. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives. Nuclear Engineering and Design, 2017, vol. 312, pp. 86–98. DOI: https://doi.org/10.1016/j.nucengdes.2016.09.028.
- Walker J., Merzari E., Obabko A. et al. Accurate prediction of the wall shear stress in rod bundles with the spectral element method at high Reynolds numbers. International Journal of Heat and Fluid Flow, 2014, vol. 50, pp. 287–299. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2014.08.012.
- Baglietto E., Ninokata H., Misawa T. CFD and DNS methodologies development for fuel bundle simulations. Nuclear Engineering and Design, 2006, vol. 236, no. 14, pp. 1503–1510. DOI: https://doi.org/10.1016/j.nucengdes.2006.03.045.
- Ninokata H., Merzari E., Khakim A. Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration. Nuclear Engineering and Design, 2009, vol. 239, no. 5, pp. 855–866. DOI: https://doi.org/10.1016/j.nucengdes.2008.10.030.
- Chudanov V.V., Aksenova A.E., Makarevich A.A. et al. CONV-3D Code Application for CFD-Modeling of Lead-Bismuth Coolant. Atomic Energy, 2017, vol. 123, no. 2, pp. 787–92. DOI: https://doi.org/10.1007/s10512-017-0306-0.
- Shams A., Roelofs F., Baglietto E., Komen E.M.J. High fidelity numerical simulations of an infinite wire-wrapped fuel assembly. Nuclear Engineering and Design, 2018, vol. 335, pp. 441–459. DOI: https://doi.org/10.1016/j.nucengdes.2018.06.012.
- Angeli D., Frengi A., Stalio E. Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D=1.4. Nuclear Engineering and Design, 2019, vol. 355, p. 110320. DOI: https://doi.org/10.1016/j.nucengdes.2019.110320.
- Mathur A., Kwiatkowski T., Potempski S., Komen E.M.J. Direct numerical simulation of flow and heat transport in a closely-spaced bare rod bundle. International Journal of Heat and Mass Transfer, 2023, vol. 211, p. 124226. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124226.
- Trande D., Grespan M., Stalio E., Angeli, D. Direct Numerical Simulation of liquid metal forced and mixed convection in a square rod bundle. Journal of Physics: Conference Series, 2024, vol. 2685, no. 1, p. 012012. DOI: https://doi.org/10.1088/1742-6596/2685/1/012012.
- Pacio J., Daubner M., Fellmoser F. et al. Heavy-liquid metal heat transfer experiment in a 19-rod bundle with grid spacers. Nuclear Engineering and Design, 2014, vol. 273, pp. 33–46. DOI: https://doi.org/10.1016/j.nucengdes.2014.02.020.
- Marinari R., Piazza I. Di, Tarantino M. et al. Experimental tests and post-test analysis of non-uniformly heated 19-pins fuel bundle cooled by Heavy Liquid Metal. Nuclear Engineering and Design, 2019, vol. 343, pp. 166–177. DOI: https://doi.org/10.1016/j.nucengdes.2018.12.024.
- Kirillov P.L., Ushakov P.A. Liquid-metal heat transfer in rod bundles. Teploenergetika – Thermal Engineering, 2001, vol. 48, issue 2, pp. 127–133.
- Lumley J.L., Newman G.R. The return to isotropy of homogeneous turbulence. Journal of Fluid Mechanics, 1977, vol. 82, no. 1, pp. 161–178. DOI: https://doi.org/10.1017/S0022112077000585.
- Bieder U., Barthel V., Ducros F. et al. CFD calculations of wire wrapped fuel bundles: modeling and validation strategies. Proc. of Workshop Proceedings of Computational Fluid Dynamics for Nuclear Reactor Safety Applications (CFD4NRS-3). 2010, vol. 90. Available at: http://www.oecd-nea.org/nsd/csni/cfd/workshops/CFD4NRS-3/technical-papers/1/1.4%20_Advanced%20Reactors.pdf. (accessed 19.05.2025).
- Ohshima H., Imai Y. Thermal hydraulic analysis of model pin bundle with liquid metal coolant-simulation results of standard problem. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 188–202. Available at: https://inis.iaea.org/records/s1ww9–44q67 (accessed 19.05.2025).
- Carlsson J., Wider H. Results of calculations of the standard problem hydrodynamics and heat transfer in a subassembly model cooled by liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 203–217. Available at: https://inis.iaea.org/records/s1ww9-44q67 (accessed 19.05.2025).
- Son H., Suh K. Result of calculations of the standard problem hydraulics and heat transfer in a subassembly model cooled by liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 218–237. Available at: https://inis.iaea.org/records/s1ww9-44q67 (accessed 19.05.2025).
- Peña A., Esteban G.A. Benchmark problem: hydraulics and heat transfer in the model pin bundles with liquid metal coolant. UPV-EHU calculations. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 238–250. Available at: https://inis.iaea.org/records/s1ww9-44q67 (accessed 19.05.2025).
- Zhukov A.V., Kuzina Yu.A., Sorokin A.P. et al. Specification of the benchmark problem of hydrodynamics and heat transfer in the model pin bundles with liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 138–172.
- Zhukov A.V., Kuzina Yu.A., Sorokin A.P. Analysis of a Benchmark Experiment on the Hydraulics and Heat Transfer in a Liquid-Metal-Cooled Assembly of Fuel-Element Simulators. Atomic Energy, 2005, vol. 99, issue 5, pp. 770–781. DOI: https://doi.org/10.1007/s10512-006-0015-6.
- Manservisi S., Menghini F. CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model. Nuclear Engineering and Design, 2015, vol. 295, pp. 251–260. DOI: https://doi.org/10.1016/j.nucengdes.2015.10.006.
- Li X., Su X., Gu L. et al. Numerical Study of Low Pr Flow in a Bare 19-Rod Bundle Based on an Advanced Turbulent Heat Transfer Model. Frontiers in Energy Research, 2022, vol. 10. DOI: https://doi.org/10.3389/fenrg.2022.922169.
- Wu J., Su X., Gong Z. et al. Exploration of high-efficiency heat transfer modes in lead-cooled assemblies: A structural optimization based on the SST k-ω-kθ-ɛθ model. Applied Thermal Engineering, 2024, vol. 247, p 23051. DOI: https://doi.org/10.1016/j.applthermaleng.2024.123051.
- Wu J., Su X., Gong Z. et al. Numerical heat transfer to LBE flow in a wire-wrapped 19-rod bundle using an OpenFOAM-based solver: four Parameter Foam. Nuclear Engineering and Design, 2024, vol. 418, p. 112917. DOI: https://doi.org/10.1016/j.nucengdes.2024.112917.
- Su X., Li X., Zhang L., Gu L. Thermal-hydraulic study on the VHELP rod bundle of China initiative accelerator driven system. Annals of Nuclear Energy, 2023, vol. 183, p. 109657. DOI: https://doi.org/10.1016/j.anucene.2022.109657.
- Su X.-K., Li X.W., Zhang L. et al. Thermal-hydraulic study in a wire-wrapped 19-rod bundle based on an isotropic four-equation model. Annals of Nuclear Energy, 2022, vol. 178, p. 109343. DOI: https://doi.org/10.1016/j.anucene.2022.109343.
- So R.M.C., Sommer T.P. A Near-Wall Eddy Conductivity Model for Fluids With Different Prandtl Numbers. Journal of Heat Transfer, 1994, vol. 116, no. 4, pp. 844–854. DOI: https://doi.org/10.1115/1.2911457.
- Otić I., Grötzbach G. Turbulent Heat Flux and Temperature Variance Dissipation Rate in Natural Convection in Lead-Bismuth, Nuclear Science and Engineering, 2007, vol. 155, no. 3, pp. 489496. DOI: https://doi.org/10.13182/NSE07-A2679.
- Barbi G., Giovacchini V., Manservisi S. A New Anisotropic Four-Parameter Turbulence Model for Low Prandtl Number Fluids. Fluids, 2021, vol. 7, no. 1, p. 6. DOI: https://doi.org/10.3390/fluids7010006.
- Zakharov A.G. Chislennoe modelirovanie teploobmena v zakruchennyh potokah zhidkih metallov primenitel'no k yadernym energoustanovkam novogo pokoleniya. Diss. kand. tekhn. nauk [Numerical modeling of heat transfer in swirling flows of liquid metals as applied to new generation nuclear power units. Cand. tech. sci. diss.]. Moscow, MEI Publ., 2017. 204 p.
- Fischer P., Lottes J., Siegel A., Palmiotti G. Large eddy simulation of wire-wrapped fuel pins I: Hydrodynamics in a periodic array. Proc. of Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. Monterey. CA, USA, 2007. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7affba31318168de497240051b1d5a91ae08d793 (accessed 19.05.2025).
- Merzari E., Pointer W.D., Smith J.G. et al. Numerical simulation of the flow in wire-wrapped pin bundles: Effect of pin-wire contact modeling. Nuclear Engineering and Design, 2012, vol. 253, pp. 374–386. DOI: https://doi.org/10.1016/j.nucengdes.2011.09.030.
- Pointer W.D., Fischer P., Smith J. et al. Simulations of turbulent diffusion in wire-wrapped sodium fast reactor fuel assemblies. Proc. of Challenges and opportunities (International conference on fast reactors and related fuel cycles). Kyoto, Japan, 2009, p. 22. Available at: https://inis.iaea.org/records/5c971-bpz17 (accessed 19.05.2025).
- Hu R., Fanning T.H. Intermediate-resolution method for thermal-hydraulics modeling of a wire-wrapped pin bundle. Proc. of American Nuclear Society (ANS) Winter Meeting and Nuclear Technology Expo. Las Vegas, USA, 2010.
- Hu R., Fanning T.H. Progress report on development of intermediate fidelity full assembly analysis methods Intermediate-resolution method for thermal-hydraulics modeling of a wire-wrapped pin bundle. Transactions of the American Nuclear Society, 2010, vol. 103, no. ANL/NE/CP-67223. DOI: https://doi.org/10.2172/1042573.
- Hu R.A., Fanning T.H. Momentum source model for wire-wrapped rod bundles-Concept, validation, and application. Nuclear Engineering and Design, 2013, vol. 262, pp. 371–389. DOI: https://doi.org/10.1016/j.nucengdes.2013.04.026.
- Roelofs F., Gopala V.R., Chandra L. et al. Simulating fuel assemblies with low resolution CFD approaches. Nuclear Engineering and Design, 2012, vol. 250, pp. 548–559. DOI: https://doi.org/10.1016/j.nucengdes.2012.05.029.
- Vlasov M.N., Merinov I.G. Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures. Fluids, 2022, vol. 7, no. 2, p. 77. DOI: https://doi.org/10.3390/fluids7020077.
- Bayaskhalanov M.V., Merinov I.G., Kharitonov V.S., Korsun A.S. Modelirovanie trekhmernykh teplogidravlicheskikh protsessov v aktivnykh zonakh reaktorov s zhidkometallicheskim teplonositelem v priblizhenii anizotropnogo poristogo tela [Numerical simulation of three-dimensional thermal-hydraulic processes in the core with liquid metal coolant in the approximation of an anisotropic porous body]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of atomic science and technology. Series: Nuclear and Reactor Constants, 2024, no. 2, pp. 243–258.
- Viellieber M., Dietrich P., Class A.G. Coarse‐Grid‐CFD for a Wire Wrapped Fuel Assembly. PAMM, 2013, vol. 13, no. 1, pp. 317–318. DOI: https://doi.org/10.1002/pamm.201310154.
- Yu. Y., Merzari E., Obabko A., Thomas J. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly. Nuclear Engineering and Design, 2015, vol. 295, pp. 48–58. DOI: https://doi.org/10.1016/j.nucengdes.2015.09.020.
- Halim O., Galleni F., Forgione N. et al. A comparative analysis of detailed and reduced CFD approaches to model wire-wrapped fuel bundles for LMFBRs applications. Annals of Nuclear Energy, 2025, vol. 211, p. 110937. DOI: https://doi.org/10.1016/j.anucene.2024.110937.
- Korsun A.S., Merinov I.G., Kharitonov V.S. et al. Numerical Simulation of Thermal-Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation. Thermal Engineering, 2019, issue 4, pp. 225–234. DOI: https://doi.org/10.1134/S0040601519040049.
- Li J., Fang D., Guo C. et al. Numerical Study on the Thermal Hydraulic Characteristics in a Wire-Wrapped Assembly of LFRs. Frontiers in Energy Research, 2020, vol. 8. DOI: https://doi.org/10.3389/fenrg.2020.548065.
- Wang X.A., Zhang D., Wang M. et al. Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor. Nuclear Engineering and Technology, 2020, vol. 52, no. 4, pp. 708–720. DOI: https://doi.org/10.1016/j.net.2019.09.009.
- Gajapathy R., Velusamy K., Selvaraj P. et al. A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle. Nuclear Engineering and Design, 2009, vol. 239, no. 11, pp. 2279–2292. DOI: https://doi.org/10.1016/j.nucengdes.2009.06.014.
- Rolfo S., Péniguel C., Guillaud M., Laurence D. Thermal-hydraulic study of a wire spacer fuel assembly. Nuclear Engineering and Design, 2012, vol. 243, pp. 251–262. DOI: https://doi.org/10.1016/j.nucengdes.2011.11.021.
- Volkov V.Y., Belova O.V., Krutikov A.A. et al. A coolant flow simulation in fast reactor wire-wrapped assembly. Thermal Engineering, 2013. vol. 60, issue 6, pp. 429–433. DOI: https://doi.org/10.1134/S0040601513060116.
- Markov P.V., Colonin V.I. Vliyanie sposoba distancionirovaniya na gidrodinamiku semisterzhnevogo puchka teplovydelyayushchih elementov [Influence of the method of distancing on the hydrodynamics of a seven-rod bundle of fuel elements]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie” – Bulletin of Bauman Moscow State Technical University. Series “Mechanical Engineering”, 2013, no. 1 (90), pp. 38–48.
- Fricano J.W., Baglietto E. A quantitative CFD benchmark for Sodium Fast Reactor fuel assembly modeling. Annals of Nuclear Energy, 2014, vol. 64, pp. 32–42. DOI: https://doi.org/10.1016/j.anucene.2013.09.019.
- Pacio J., Litfin K., Batta A. et al. Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: Experimental and simulation results. Nuclear Engineering and Design, 2015, vol. 290, pp. 27–39. DOI: https://doi.org/10.1016/j.nucengdes.2014.11.001.
- Getya S.I., Krapivcev V.G., Markov P.V., Solonin V.I. Techenie i massoperenos v malosterzhnevyh puchkah orebrennyh tvelov primenitel'no k reaktornoj ustanovke BREST-OD-300 [Flow and mass transfer in small rod bundles of finned fuel rods as applied to the BREST-OD-300 reactor unit]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie” – Bulletin of Bauman Moscow State Technical University. Series “Mechanical Engineering”, 2015, no. 1 (100), pp. 84–92.
- Lubina A.S, Subbotin A.S., Sedov A.A., Frolov A.A. Analiz osobennostey gidrodinamiki i teploobmena v TVS perspektivnogo natrievogo reaktora s vysokim koeffitsientom vosproizvodstva v uran-plutonievom toplivnom tsikle [Analysis of Features of Hydrodynamics and Heat Transfer in the Fuel Assembly of Perspective Sodium Reactor with a High Rate of Reproduction in the Uranium-Plutonium Fuel Cycle]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Nuclear Science and Engineering. Series: Physics of Nuclear Reactor, 2015, no. 1, pp. 37–49.
- Fomichev D.V., Solonin V.I. Struktura turbulentnogo potoka v puchkah sterzhnej teplovydelyayushchih sborok reaktornoj ustanovki BREST-OD-300 [Structure of turbulent flow in bundles of fuel rod bundles of the BREST-OD-300 reactor unit]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie” – Bulletin of Bauman Moscow State Technical University. Series “Mechanical Engineering”, 2015, no. 3 (102), pp. 4–16.
- Fomichev D.V., Solonin V.I. Gidravlicheskie harakteristiki puchkov sterzhnej teplovydelyayushchih sborok reaktornoj ustanovki BREST-OD-300 [Hydraulic characteristics of fuel rod bundles of fuel assemblies of the BREST-OD-300 reactor unit]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie” – Bulletin of Bauman Moscow State Technical University. Series “Mechanical Engineering”, 2015, no. 2 (101), pp. 4–17.
- Tiftikci A., Kocar C. Turbulent Flow Simulations of Wire-wrapped Fuel Pin Bundle of Sodium Cooled Fast Reactor in Lattice-Boltzmann Framework. Proc. of the International Conference Nuclear Energy for New Europe. Portorož, Slovenia, 2015, pp. 14–17. Available at: https://arhiv.djs.si/proc/nene2015/pdf/NENE2015_208.pdf (accessed 19.05.2025).
- Naveen Raj M., Valeamy K. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor. Annals of Nuclear Energy, 2016, vol. 87, pp. 331–349. DOI: https://doi.org/10.1016/j.anucene.2015.09.008.
- Dunaytsev A.A., Solonin V.I. Protsessy massoobmena v puchkakh orebrennykh sterzhney [Mass transfer processes in bundles of finned rods. Problems of mechanical engineering and automation]. Problemy mashinostroeniya i avtomatizatsii – Problems of Mechanical Engineering and Automation, 2016, no. 1, pp. 115–124.
- Merzari E., Fischer P., Yuan H. et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly. Nuclear Engineering and Design, 2016, vol. 298, pp. 218–228. DOI: https://doi.org/10.1016/j.nucengdes.2015.11.002.
- Tiftikci A., Kocar C. Investigation of thermal turbulent flow characteristics of wire-wrapped fuel pin bundle of sodium cooled fast reactor in lattice-Boltzmann framework. Proc. of the International Conference Nuclear Energy for New Europe. Portorož, Slovenia, 2016, pp. 5–8. Available at: https://arhiv.djs.si/proc/nene2016/html/pdf/NENE2016_501.pdf (accessed 19.05.2025).
- Zhao P., Liu J., Ge Z. et al. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle. Nuclear Engineering and Design, 2017, vol. 317, pp. 146–157. DOI: https://doi.org/10.1016/j.nucengdes.2017.03.038.
- Brockmeyer L., Carasik L.B., Merzari E., Hassan Y. Numerical simulations for determination of minimum representative bundle size in wire wrapped tube bundles. Nuclear Engineering and Design, 2017, vol. 322, pp. 577–590. DOI: https://doi.org/10.1016/j.nucengdes.2017.06.038.
- Wang X., Cheng X. Analysis of inter-channel sweeping flow in wire wrapped 19-rod bundle. Nuclear Engineering and Design, 2018, vol. 333, pp. 115–121. DOI: https://doi.org/10.1016/j.nucengdes.2018.04.008.
- Chai X., Liu X., Xiong J., Cheng X. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle. Nuclear Engineering and Design, 2019, vol. 344, pp. 107–121. DOI: https://doi.org/10.1016/j.nucengdes.2019.01.019.
- Dovizio D., Shams A., Roelofs F. Numerical prediction of flow and heat transfer in an infinite wire-wrapped fuel assembly. Nuclear Engineering and Design, 2019, vol. 349, pp. 193–205. DOI: https://doi.org/10.1016/j.nucengdes.2019.04.041.
- Dovizio D., Mikuž B., Shams A., Roelofs F. Validating RANS to predict the flow behavior in wire-wrapped fuel assemblies. Engineering and Design, 2020, vol. 356, p. 110376. DOI: https://doi.org/10.1016/j.nucengdes.2019.110376.
- Liu X.J., Yang D.M., Yang Y. et al. Computational fluid dynamics and subchannel analysis of lead-bismuth eutectic-cooled fuel assembly under various blockage conditions. Applied Thermal Engineering, 2020, vol. 164, p. 114419. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114419.
- Li Y., Huang M., Wang B., Meng X., Cheng Y. Numerical study on the hydrothermal characteristics of a wire-wrapped rod bundle with nonuniform wire pitches. Progress in Nuclear Energy, 2025, vol. 178, p. 105529. DOI: https://doi.org/10.1016/j.pnucene.2024.105529.
- Dong X., Xue M., Lin J. et al. Study on the flow and heat transfer of LBE in wire-rod and rib-rod bundle channels. Annals of Nuclear Energy, 2025, vol. 213, p. 111105. DOI: https://doi.org/10.1016/j.anucene.2024.111105.
- Chen J., Zhang D., Wang X. et al. CFD Simulation of a 61-pin Wire-wrapped Fuel Subassembly for Sodium Cooled Fast Reactor. Proc. of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea, 2017. Available at: https://www.kns.org/files/int_paper/paper/MC2017_2017_7/P325S07-01ChenJ.pdf (accessed 19.05.2025).
- Kraus A.R., Merzari E. LES and RANS Modeling of an 84-Pin Hexagonal Rod Bundle with Spacer Grid and Experimental Validation. Nuclear Technology, 2024, pp. 1–23. DOI: https://doi.org/10.1080/00295450.2024.2409594.
- Merzari E., Bolotnov I., Dinh N. et al. Building a multiscale framework: An overview of the NEAMS thermal-hydraulics integrated research project. Nuclear Engineering and Design, 2025, vol. 433, p. 113807. DOI: https://doi.org/10.1016/j.nucengdes.2024.113807.
UDC 621.039.51
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 2, 2:20