EDN: CMOTIA
Authors & Affiliations
Vlaskin G.N., Khomyakov Yu.S.
 Rosatom “Innovation and Technology Center of the PRORIV Project”, Moscow, Russia 
   
 
Vlaskin G.N. –  Researcher. Contacts: 1, Ramensky  b-r, Moscow, Russia, 107140. Tel.: +7 (962) 979-74-10;  e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it..
 Khomyakov Yu.S. – Head  of Department, Dr. Sci. (Phys.-Math.).
Abstract
Assessing  the radiation hazard when working with radioactive materials is a priority task  that requires modeling the formation, calculation of the intensity, and  spectrum of the emitted penetrating radiation. The RASTAS complex is designed  to calculate neutron and photon radiation sources based on initial data on the  composition of radioactive materials and generate a file of calculated  radiation intensity and spectrum values. The sources of ionizing radiation may  include technological radioactive materials, including fuel and structural  materials, coolant and gas circuits of the reactor, fuel elements, fuel  assemblies, absorber assemblies, and other irradiated elements of the reactor  that are sent to processing, reprocessing, and waste management facilities at  fuel cycle enterprises. The RASTAS software package is based on the upgraded  NEDIS, STORM, and SOGAM codes, which calculate, respectively, the neutron  source (α, n)-reaction  and spontaneous fission, as well as the spontaneous fission photon source, the  electron and positron bremsstrahlung photon source, and the alpha and beta  decay photon source for radioactive nuclei. A brief description of the software  tools is provided. The source power and neutron spectrum of spontaneous fission  of actinides are calculated using the Watt formula. This involves using data on  the half-life of actinides, the probability of spontaneous fission, and  parameters that determine the spectral characteristics. In this case, data on  the half-life of actinides, the probability of spontaneous fission, and the  parameters that determine the spectral characteristics are used. The neutron  source power from the (α, n)-reaction  is calculated using data on the target's stopping power for α-particles of specific energy and  data on the integrated cross-section for neutron production when α-particles interact with the target  material. Neutron spectra from (α,n)-reactions are calculated using data on the target's stopping power  for α-particles of a  certain energy and using the kinematic equations of α-particle interactions with light isotope  nuclei in the center-of-mass system and the corresponding cross sections for  neutron production with exit to individual levels of residual reaction nuclei.  The power and spectrum of photon radiation are calculated based on a library of  gamma line data for individual nuclides, obtained from the ENDF-B7.1 and ENSDF  files for 1280 isotopes. The power and spectrum of photon of bremsstrahlung is  calculated based on the method of photon formation during the braking of  charged particles (electrons and positrons) for an arbitrary user-defined  medium. The RASTAS complex can be used both independently to assess the power  of radiation sources and the radiation characteristics of materials, spent  nuclear fuel, and radioactive waste, and as part of the COMPLEX software  package for radiation safety justification to solve problems of neutron and  gamma-ray transport.
Keywords
software  package, neutrons, photons, calculations, radiation characteristics,  radioactive waste, SNF, radiation safety, nuclear physical data
 Article Text (PDF, in Russian)
 References
  
 
 
  - Scale: A Comprehensive Modeling and Simulation  Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39,  Version 6.1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 2011.  Available from Radiation Safety Information Computational Center at Oak Ridge  National Laboratory as CCC-785.
- Vlaskin G.N. Programma NEDIS2.0 dlya rascheta vykhoda i spektrov  neytronov, obrazuyushchikhsya v (α, n)-reaktsiyakh na yadrakh legkikh  elementov i za schet spontannogo deleniya [NEDIS2.0 code to calculate yields  and spectra of neutrons produced in light element nuclei (α, n)  reactions and spontaneous fission]. Preprint VNIINM 06-1. Moscow, VNIINM  Publ., 2006. 
- Vlaskin G.N.,  Khomyakov Yu.S. (α, n) Neutron Spectra on Thick Light  Targets. Atomic Energy, 2021,  vol. 130, issue 2, pp. 98–110. DOI: 10.1007/s10512-021-00781-0. 
- Firestone R.B. Table of Isotopes 8th Edition. Vol. 1.  John Wiley and Sons Inc., 1996.
- ENDF/B-VII.1 Evaluated Nuclear Data Library. Available at: http://www.nndc.bnl.gov/endf/b7.1/index.html  (accessed 17.07.2025)
- Vlaskin G.N., Khomyakov Y.S., Bulanenko V.I. Neutron Yield of the  Reaction (α, n) on Thick Targets Comprised of Light  Elements. At  Energy, 2015, vol. 117, issue 5, pp. 357–365. DOI: https://doi.org/10.1007/s10512-015-9933-5.
- Ziegler J.F. The Stopping and Ranges of Ions in Matter. Vol. 4. Pergamon, 1977.
- Ziegler James. SRIM  & TRIM. The Stopping and Range of Ions in Matter. Pergamon, 2013.  324 p. 
- Chard P.M.J. and  Croft S. A database of 240Pu effective and 235U effective coefficients for various fertile and fissile isotopes. Proc. of the 19th  Annual ESARDA Symposium on Safeguards and Nuclear Material Management.  France, May 13–15, 1997, pp. 389–396. 
- Holden N.E., Hoffman D.C. Spontneous Fission Half-Lives for  Ground-State Nuclides. IUPAC Technical Report. Pure. Appl. Chem., 2000,  vol. 72, no. 8, pp. 1525–1562.
- Bonetti R. et al.  First observation of spontaneous fission of 232U. Phys. Rev C,  2000, vol. 62, pp. 047304–047307.
- Holden N.E., Zucker M.S. A Reevaluation of the Average Prompt Neutron  Emission Multiplicity (Nubar) values from Fission of Uranium and Transuranium  Nuclides. BNL-NCS-35513. Brookhaven National Laboratory, 1985.
- Santi P. and Miller M. Reevaluation of Prompt Neutron Emission  Multiplicity Distributions for Spontaneous Fission. Nucl. Sci. and Eng.,  2008, vol. 160, pp. 190–199.
- Simakov S., Verpelli M., Otsuka N. Update of the nuclear data for  the neutron emissions for actinides of interest in safeguards. Nuclear Data  Section, IAEA, 2015. Available  at: https://www-nds.iaea.org/sgnucdat/SF_n-Yield_20150313.pdf (accessed 17.07.2025).
- Stephen  Croft, Andrea Favalli. Review and  Evaluation of the Spontaneous Fission Half-lives of 238Pu, 240Pu  and 242Pu and the Corresponding Specific Fission Rates. Nuclear  Data Sheet, 2021, vol. 175, pp. 269–287.  DOI: https://doi.org/10.1016/j.nds.2021.06.003. 
- Wagemans C. The  Nuclear Fission Process. Boca Raton, Florida: CRC Press, Inc., 1991.
- Valentine T.E. MCNP-DSP  User’s Manual. ORNL/TM-13334, R2, Oak Ridge National Laboratory, 2000.
- Maienschein F.C.,  Peelle R.W., Love T.A. Neutron Phys. Ann. Prog. Rep. for Sept. 1, 1958. ORNL-2609. Oak Ridge National Laboratory, 1958. 
- Herbert Goldstein. Fundamental  Aspects of Reactor Shielding. Massachussetts: Addison-Wesley Publishing  Company, Inc. Reading, 1959. 416 p. 
- Seltzer S.M. and  Berger M.J. Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV – 10 GeV incident on screened nuclei and orbital electrons of neutral  atoms with z = 1–100. Atomic Data and Nuclear Data Tables, 1986,  vol. 35, issue 3, pp. 345–418. 
- Bethe H., Heitler W. Proceeding of the Royal Society of London,  Series A: Mathematic and Physical Science, 1934, vol. 146, pp. 83–112. 
- Pratt R.H., Tseng  H.K., Lee C.M. and Kissel L. Bremsstrahlung energy spectra from electrons of  kinetic energy 1 keV ≤ T1 ≤ 2000 keV incident  on neutral atoms 2 ≤ Z ≤  92. Atomic Data and Nuclear Data Tables,  1977, vol. 20, pp. 175–209. 
- Davies H., Bethe  H.A. and Maximon L.C. Theory of bremsstrahlung and pair production. II.  Integral cross section for pair production. Phys. Rev. 1954,  vol. 93, pp. 788–795. 
- Kim L., Pratt R.H., Seltzer S.M. and Berger M.J. Ratio of positron to  electron bremsstrahlung energy loss: an approximate scaling law. Phys. Rev.  A, 1986, vol. 33, pp. 3002–3009. 
- Francesco Salvat,  José M. Fernández-Varea, Josep Sempau. PENELOPE-2008: A Code System for  Monte Carlo Simulation of Electron and Photon Transport. Workshop Proceedings.  Barcelona, Spain, 30 June – 3 July 2008, OECD 2009, NEA No. 6416. 
- Stopping Power for electrons and Positrons. ICRU Report 37, 1984. Tormoznaya  sposobnost' elektronov i pozitronov. Doklad 37 MKRE: Per. s angl./Pod red. I.B.  Keirim-Markusa [Stopping power of  electrons and positrons. Report 37 ICRE: Trans. from English/Ed. by I.B.  Keirim-Markus]. Moscow,  Energoatomizdat Publ., 1987. 
- Berger M.J., Coursey J.S., Zucker V.A., Change J. Stopping-Power and  Range Tables for Electrons, Protons, and Helium Ions. ESTAR, PSTAR, and ASTAR  databases. Washington, DC: National Institute of Standards and Technology,  February 14, 2006. Available  at:  http://physics.nist.gov/PhysRefData/Star/Text/contents.html (accessed 17.07.2025). 
- Knipp J.K.,  Uhlenbeck G.E. Physica, 1936, vol. 3, p. 425.
- Bloch F. On the  continuous gamma-radiation accompanying the β-decay. Phys. Rev., 1936,  vol. 50, p. 272. 
- Chadick M.B., Herman M., Obložinský P., Dunn  M.E., Danon Y., Kahler  A.C., Smith D.L.,  Pritychenko B., Arbanas G., Arcilla R., Brewer R., Brown D.A., Capote  R., Carlson A.D.,  Cho Y.S., Derrien H.,  Guber K., Hale G.M., Hoblit S., Holloway  S., Young P.G. ENDF/B-VII.1  Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission  Product Yields and Decay Data. Nuclear Data Sheets, December 2011, vol. 112, issue 12,  pp. 2887–2996. 
- National Nuclear  Data Center. Evaluated Nuclear Structure Data File (ENSDF). Brookhaven  National Laboratory, 2012. Available at:  https://www-nds.iaea.org/ensdf_base_files2012 (accessed 17.07.2025). 
- Eckerman K., Endo A. ICRP Publication 107. Nuclear decay data for  dosimetric calculations. Ann  ICRP, 2008, vol. 38(3), pp. 7–96. DOI: 10.1016/j.icrp.2008.10.004.
- Matveev L.V., Center E.M. Uran-232 i yego vliyaniye na  radiatsionnuyu obstanovku v yadernom toplivnom tsikle [Uranium-232 and its  influence on the radiation situation in the nuclear fuel cycle]. Moscow,  Energoatomizdat Publ., 1985. 
  
UDC 621.039.58
 Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 3, 3:2