Sorokin A.P.1, Sorokin G.A.2, Kuzina Yu.A.1, Denisova N.A.1
 1 A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia 
2 Research University “Moscow Institute of Physics and Technology”, Moscow, Russia
Sorokin A.P. – Chief Researcher, Dr. Sci. (Tech.). Contacts: 1, pl. Bondarenko, Obninsk,  Kaluga region, Russia, 249033. Tel.: +7 (484) 399-70-00 (add. 84-47); e-mail: 
Kuzina  Yu.A. – Head of Department of Nuclear Power Engineering, Cand. Sci.  (Tech.).
Denisova N.A. – Lead  Engineer.
 Sorokin G.A. – Associate Professor,  Cand. Sci. (Tech.).
Abstract
The results of a large volume of studies of the regularities of thermal-hydraulic processes in fast reactors are accumulated in calculation programs, which are the main tool for designing reactor installations and justifying their safety. The theoretical foundations of the main methods of mathematical modeling of mass and heat exchange processes during the flow of multiphase compressible coolants in fuel rod assemblies of fast reactors are presented: fluid dynamics models, a porous body and a channel-by-channel calculation method. The main content of modern thermal-hydraulic analysis methods for reactor applications are differential equations of motion and energy of a continuous medium within the framework of a fluid dynamics model, macrotransfer of mass, momentum and energy of a porous body model and a channel-by-channel calculation model with the corresponding closing relations and boundary conditions. The most complete consideration of the influence of various factors on temperature fields in fuel assemblies (deformation, non-uniform energy release, stochastic deviations of parameters, etc.) and interchannel exchange mechanisms with ensuring high calculation accuracy is carried out in the channel-by-channel calculation method. Based on the established analogy between the macrotransfer equations within the channel-by-channel calculation model, the porous body model and the continuum equations, the class of macrotransfer equations is analyzed, the initial and boundary conditions are formulated, numerical methods for solving the system of macrotransfer equations within the channel-by-channel model and the porous body model are indicated. Numerous programs created for numerical modeling of fuel assembly characteristics for various reactor conditions are analyzed. The development of a promising direction of computational studies by fluid dynamics methods, the development and use of CFD programs for numerical modeling of thermal hydraulics, as well as the conjugation of system thermal hydraulics and three-dimensional neutron-physical programs and CFD programs for modeling the primary circuit thermal hydraulics of reactor plants for the analysis of reactor plant safety are discussed.
Keywords
fast reactors, liquid metals, core, thermal hydraulics, safety,  numerical modeling, calculation methods, fluid dynamics equations, subchannel  method, porous body model, calculation programs, system programs
Article Text (PDF, in Russian)
- Sorokin A.P., Bogoslovskaya G.P. Metody teplogidravlicheskogo rascheta teplovydelyayushchikh sborok bystrykh reaktorov [Methods of thermal-hydraulic calculation of fuel assemblies of fast reactors]. Teploenergetika – Thermal Engineering, 1997, no. 3, pp. 21–26.
- Sorokin A.P., Efanov A.D., Yuryev Yu.S., Zhukov A.V., Ushakov P.A., Bogoslovskaya G.P. Methods and codes for modeling thermohydraulics of fast reactor cores subassemblies under nominal and non-nominal operation conditions. LMFR core thermohydraulics status and prospects. IAEA-TECDOC-1157. Vienna: IAEA, 2000. Pp. 9–22.
- Sorokin G.A. Modelirovanie teploobmena zhidkometallicheskogo teplonositelya v rezhime avariynogo raskholazhivaniya v reaktorakh na bystrykh neytronakh. Dis. kand. tekh. nauk [Modeling of heat exchange of liquid metal coolant in emergency cooldown mode in fast neutron reactors. Diss. cand. tech. sci.]. Obninsk, IATE, 2007. 168 p.
- Mantlik F., Schmid I., Milbauer P., Zhukov A.V., Ushakov P.A., Sorokin A.P., Yuryev Yu.S., Bogoslovskaya G.P., Kolmakov A.P., Titov P.A., Tikhomirov B.B. Methods and programs for thermal-hydraulic calculations of fast reactor fuel rod assemblies. Prague: Center for Nuclear Research, 1987, 268 p.
- Zhukov A.V., Sorokin A.P., Kornienko Yu.N., Titov P.F., Ushakov P.A. Metody i rezul'taty teplogidravlicheskih issledovanij nestacionarnyh processov v TVS bystryh reaktorov [Methods and results of thermal-hydraulic studies of non-stationary processes in fuel assemblies of fast reactors]. Obzor FEI-0227 – Review IPPE-0227. Moscow, TsNIIatominform Publ., 1988, 40 p.
- Subbotin V.I., Ibragimov M.Kh., Ushakov P.A., Bobkov V.P., Zhukov A.V., Yuryev Yu.S. Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh (osnovy rascheta) [Hydrodynamics and heat transfer in nuclear power plants (calculation principles)]. Moscow, Atomizdat Publ., 1975. 408 p.
- Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v TVS bystrykh reaktorov (teoreticheskie osnovy i fizika protsessa). Fizika i tekhnika yadernykh reaktorov, vyp. 38 [Interchannel exchange in fuel assemblies of fast reactors (theoretical foundations and physics of the process. Physics and technology of nuclear reactors, issue 38]. Moscow, Energoatomizdat Publ., 1989. 184 p.
- Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v TVS bystrykh reaktorov (raschetnye programmy i prakticheskoe prilozhenie). Fizika i tekhnika yadernykh reaktorov, vyp. 43 [Interchannel exchange in fuel assemblies of fast reactors (calculation programs and practical application). Physics and technology of nuclear reactors, issue 43]. Moscow, Energoatomizdat Publ., 1991. 224 p.
- Subbotin V.I., Kashcheev V.M., Nomofilov E.V., Yuryev Yu.S. Reshenie zadach reaktornoy fiziki na EVM [Solving reactor physics problems on a computer]. Moscow, Atomizdat Publ., 1979. 143 p.
- Sha W.T. An Overview on Rod Bundle Thermal-Hydraulic Analysis. Nuclear Engineering and Design, 1980, vol. 62, no. 1–3, pp. 1–25.
- Delhaye J.M., Giot M., Riethmuller M.L. Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Washington: Hemisphere Pub. Corp.; New York: McGraw-Hill, 1981. 525 p.
- Moorthia A., Sharmab A.K., Velusamy K. A Review of Sub-channel Thermal Hydraulic Codes for Nuclear Reactor Core and Future Directions. NuclearEngineeringandDesign, 2018, vol. 332, no. 3, pp. 329–344.
- Sorokin A.P., Kuzina Yu.A., Alekseev V.V., Delnov V.N. Fundamental'nye i prikladnye issledovaniya teplofiziki reaktorov na bystrykh neytronakh s natrievym teplonositelem. Dostignutye rezul'taty i problemy dal'neyshikh issledovaniy [Fundamental and applied studies of thermal physics of fast reactors with sodium coolant. Achieved results and problems of further research]. Lektsiya “Dollezhalevskie chteniya” [Lecture “Dollezhalev readings”]. Moscow, AO “NIKIET”, February 15, 2024. 41 p.
- Sorokin A.P., Kuzina Yu.A., Alekseev V.V., Askhadullin R.Sh., Delnov V.N., Denisova N.A. 70 let issledovaniyam teplomassoperenosa, fizicheskoy khimii i tekhnologii teplonositeley v energeticheskikh sistemakh v GNTs RF – FEI [70 years of research into heat and mass transfer, physical chemistry and technology of coolants in energy systems at the IPPE]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, no. 3, pp. 5–76.
- Sparrow E.M., Loeffler A. Longidudinal laminar flow between cylinders arranged in regular array. AIChE J, 1959, vol. 5, no. 3, pp. 325–330.
- Ibragimov M.Kh., Subbotin V.I., Bobkov V.P., Sabelev G.I., Taranov G.S. Struktura turbulentnykh potokov v kanalakh [Structure of turbulent flows in channels]. Moscow, Atomizdat Publ., 1978. 296 p.
- Yeung M.R., Wolf L. Multi-Cell Flow Heat Transfer Analysis for Finity LMFBR Bundles. Nuclear Engineering and Design, 1980, vol. 62, no. 1–3, pp. 101–121.
- Buleev N.I. Theoretical model of turbulent exchange in a turbulent flow of liquid. Proc. of Third International Conference on Peaceful Uses of Atomic Energy. New York, 1965, vol. 8, pp. 305–315.
- Buleev N.I. Dal'neyshee razvitie prostranstvennoy modeli turbulentnogo obmena v potokakh neszhimaemoy zhidkosti. V kn.: Pristennoe turbulentnoe techenie [Further development of the spatial model of turbulent exchange in incompressible fluid flows. In book: Near-wall turbulent flow]. Novosibirsk, ITF SO AN SSSR Publ., 1975. Pp. 51–79.
- Sidelnikov V.N., Zhukov A.V. Raschet temperaturnykh poley na nachal'nom uchastke reshetok tvel i analiz vliyaniya peremennogo energovydeleniya (ploskoe techenie teplonositelya) [Calculation of temperature fields at the initial section of fuel element grids and analysis of the influence of variable energy release (flat coolant flow)]. Preprint FEI-414 – Preprint IPPE-414. Obninsk, IPPE Publ., 1973.
- Zhukov A.V., Kirillova G.P. Raschet temperaturnykh poley na nachal'nom uchastke tvelov, obtekaemykh turbulentnym potokam zhidkometallicheskogo teplonositelya [Calculation of temperature fields at the initial section of fuel elements, streamlined by turbulent flows of liquid metal coolant]. Preprint FEI-715 – Preprint IPPE-715. Obninsk, FEI Publ., 1976.
- Kriventsev V., Ninokata H. Calculation of Detailed Velocity and Temperature Distribution in a Rod Bundle of Nuclear Reactor. Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics. NURETH-9. San Francisko, USA, 3–8 October 1999.
- Osipov S.I., Rogozhkin S.F., Shepelev S.F., Aksenov A.A., Sazonova V.V., Shmelev V.V. Verification Calculation as per CFD FLOWVISION Code for Sodium-cooled Reactor Plants. Proc. of the International Conference on Fast Reactors and Related Fuel Cycles, FR 13. Paris, March 4–7, 2013, Track 7, no. 373, 11 p.
- Roelof F., Gopala V.R., Van Tichelen K., Cheng X., Merzari E., Pointer W.D. Status and Future Challenges of CDF for Liquid Metal Cooled Reactors. Proc. of the International Conference on Fast Reactors and Related Fuel Cycles, FR 13. Paris, March 4–7, 2013, Track 7, no. 187, 11 p.
- Chudanov V.V. Development and Validation of CONV-3D Code for Calculation of Thermal and Hydrodynamics of Fast Reactor at the Supercomputer. Proc. of the International Conference on Fast Reactors and Related Fuel Cycles, FR 13. Paris, March 4–7, 2013, Track 7, no. 368, 12 p.
- Farges B., Sageaux T., Goreaud N., STAR-SD / CATHARE Coupling Methodology for Thermal-hydraulic Calculation on Primary Loop and Hea Exchangers in Sodium Cooled Fast Reactor. Proc. of the InternationalConferenceonFastReactorsandRelatedFuelCycles, FR13. Paris, March 4–7, 2013, Track 7, no. 363, 11 p.
- Milbauer P. Primenenie metoda konechnykh elementov dlya rascheta turbulentnogo techeniya v pryamykh nekruglykh kanalakh. Gidrodinamika i teploperedacha v aktivnykh zonakh i parogeneratorakh bystrykh reaktorov s natrievym teplonositelem [Application of the finite element method for calculating turbulent flow in straight non-circular channels. Hydrodynamics and heat transfer in active zones and steam generators of fast reactors with sodium coolant]. Praga, ChSKAE Publ., 1984. Vol. 1, pp. 104–115.
- Zhukov A.V., Sorokin A.P., Ushakov P.A., Yuryev Yu.S., Bogoslovskaya G.P., Trevgoda V.M., Titov P.A., Mantlik F., Schmidt I., Milbauer P. Teplofizicheskoe obosnovanie temperaturnykh rezhimov TVS bystrykh reaktorov s uchetom faktorov peregreva. Metodiki i programmy teplogidravlicheskogo rascheta sborok tvelov bystrykh reaktorov [Thermophysical substantiation of temperature modes of fuel assemblies of fast reactors taking into account overheating factors. Methods and programs for thermal-hydraulic calculation of fuel assemblies of fast reactors]. Preprint FEI-1817 – Preprint IPPE-1817. Obninsk, IPPE, 1986. 52 p.
- Kaiser H.G., Zeggel W. Turbulent Flows in Complex Rod Bundle Geometries Numerically Predicted by the Use of Fem and Basic Turbulent Model. Nuclear Engineering and Design, 1987, vol. 99, no. 3, pp. 351–363.
- Nomophilov E.V., Trevgoda V.M. Metodika rascheta poley skorosti i temperatury v nestandartnykh kanalakh. Gidrodinamika i teploperedacha v aktivnykh zonakh i parogeneratorakh bystrykh reaktorov s natrievym teplonositelem [Methodology for calculating velocity and temperature fields in non-standard channels. Hydrodynamics and heat transfer in active zones and steam generators of fast reactors with sodium coolant]. Prague, ChSKAE Publ., 1984. Vol. 1, pp.174–182.
- Sholokhov A.A., Zasorin I.P., Minashin E.E. et al. Opredelenie temperatury v tvelakh yadernogo reaktora [Determination of temperature in fuel elements of a nuclear reactor]. Moscow, Atomizdat Publ., 1978.
- Rowe D.S. A Thermal-Hydraulic Subchannel Analysis for Rod Bundle Nuclear Fuel Elements. Heat Transfer, 1970, vol. 3, FC 7.13, pp. 1–12.
- Zhukov A.V., Kornienko Yu.N., Sorokin A.P., Ushakov P.A., Titov P.A. Metody i programmy pokanal'nogo teplogidravlicheskogo rascheta sborok tvelov s uchetom mezhkanal'nogo vzaimodeystviya teplonositelya [Methods and programs for channel-by-channel thermal hydraulic calculation of fuel element assemblies taking into account inter-channel interaction of the coolant]. Analiticheskiy obzor OB-107 – Analytical review of OB-107. Obninsk, ONTI FEI Publ., 1980. 81 p.
- Selivanov V.M., Kornienko Yu.N., Sorokin A.P. Metody i programmy pokanal'nogo teplogidravlicheskogo analiza sborok tvel, okhlazhdaemykh kipyashchim teplonositelem [Methods and programs for channel-by-channel thermal-hydraulic analysis of fuel element assemblies cooled by boiling coolant]. Analiticheskiy obzor OB-110 – Analytical review of OB-110. Obninsk, ONTI FEI Publ., 1980. 45 p.
- Sorokin A.P., Zhukov A.V., Kornienko Yu.N., Ushakov P.A. Uravneniya makroperenosa v TVS reaktorov (mnogofaznye potoki) [Macrotransport equations in fuel assemblies of reactors (multiphase flows)]. Preprint FEI-1800 – Preprint IPPE-1800. Obninsk, IPPE Publ., 1986. 30 p.
- Weisman J. Methods for Detailed Thermal and Hydraulic Analysis of Water-Cooled Reactors. Nuclear Science and Engineering, 1975, vol. 57, no. 4, pp. 255–276.
- Khan E.V., Rosenow W.A., Sonin A.A., Todreas N.E. A Porous Body Model for Prediction Temperature Distribution in Wire Wrapped Fuel Rod Assemblies. Nuclear Engineering and Design, 1975, vol. 35, no. 1, pp. 1–12.
- Zhukov A.V., Sorokin A.P., Kirillov P.L., Ushakov P.A., Kiryushin A.I., Kuzavkov N.G. et al. Metodicheskie ukazaniya i rekomendatsii po teplogidravlicheskomu raschetu aktivnykh zon bystrykh reaktorov [Methodological guidelines and recommendations for thermohydraulic calculation of fast reactor cores]. Obninsk, GKAE, IPPE, 1988. RTM 1604.008-88. 436 p.
- Gordeev S.S., Sorokin A.P., Tikhomirov B.B., Trufanov A.A., Denisova N.A. Metodika teplogidravlicheskogo rascheta temperaturnykh rezhimov TVS s uchetom mezhkanal'nogo peremeshivaniya teplonositelya i sluchaynogo otkloneniya parametrov v protsesse kampanii [Method of calculation of temperature regimes for fuel elements in the fuel subassembly taking into account the inter-channel mixing of coolant and random deviations of the parameters]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology Series: Nuclear and Reactor Constants, 2016, no. 4, pp. 116–130.
- Gordeev S.S., Sorokin A.P. Teplogidravlicheskiy raschet aktivnoy zony reaktorov na bystrykh neytronakh s uchetom vliyaniya razlichnykh faktorov [Thermal hydraulic calculation of the core of fast neutron reactors taking into account the influence of various factors]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology Series: Nuclear and Reactor Constants, 2016, no. 4, pp. 215–237. Available at: https://vant.ippe.ru/images/pdf/2016/4-23.pdf (accessed 19.08.2025).
- Bogoslovskaya G.P., Zhukov A.V., Sorokin A.P., Tikhomirov B.B., Titov P.A., Ushakov P.A. Programma TEMP-M teplogidravlicheskogo rascheta kasset tvelov bystrykh reaktorov [TEMP-M program for thermal-hydraulic calculation of fuel element cassettes for fast reactors]. Preprint FEI-1401 – Preprint IPPE-1401. Obninsk, IPPE Publ., 1983, 20 p.
- Kazachkovsky O.D., Sorokin A.P., Zhukov A.V., Ushakov P.A., Bogoslovskaya G.P., Kriventsev V.I., Titov P.A. Metod sosredotochennykh parametrov v zadache o temperaturnom pole v formoizmenennykh TVS bystrykh reaktorov s neadiabaticheskimi granichnymi usloviyami [The method of lumped parameters in the problem of the temperature field in shaped fuel assemblies of fast reactors with non-adiabatic boundary conditions]. Preprint FEI-1672 – Preprint IPPE-1672. Obninsk, IPPE Publ., 1985. 24 p.
- Bogoslovskaya G.P., Zhukov A.V., Poplavsky V.M. et al. Metod rascheta temperaturnogo polya v kassete tvelov bystrogo reaktora pri sluchaynom raspredelenii parametrov po metodu Monte-Karlo [Method for calculating the temperature field in the fuel element cassette of a fast reactor with a random distribution of parameters by the Monte Carlo method]. Preprint FEI-1340 – Preprint IPPE-1340. Obninsk, IPPE Publ., 1982. 14 p.
- Bogoslovskaya G.P., Zhukov A.V., Poplavsky V.M. et al. Raschet statisticheskikh kharakteristik temperaturnogo polya v kassetakh tvelov reaktora tipa BN-600 s ispol'zovaniem metoda Monte-Karlo [Calculation of statistical characteristics of the temperature field in fuel rod cassettes of a BN-600 reactor using the Monte Carlo method]. Preprint FEI-1376 – Preprint IPPE-1376. Obninsk, IPPE Publ., 1982.
- Tikhomirov B.B., Savitskaya L.V., Poplavsky V.M., Sorokin A.P. Modeli statisticheskogo ucheta radiatsionnogo formoizmeneniya konstruktsionnykh materialov v raschete temperaturnogo rezhima TVS bystrykh reaktorov [Models of statistical accounting of radiation deformation of structural materials in the calculation of the temperature regime of fuel assemblies of fast reactors]. Sbornik dokladov na franko-sovetskom seminare “Voprosy teplogidravliki aktivnoy zony bystrykh reaktorov” [Proc. of the Franco-Soviet Seminar “Problems of thermal hydraulics of the active zone of fast reactors”]. Cadarache, France, 1986.
- Zhukov A.V., Sorokin A.P., Ushakov P.A., Bogoslovskaya G.P., Kriventsev V.I., Titov P.A. Metod statisticheskogo rascheta aktivnoy zony bystrogo reaktora s uchetom formoizmeneniya TVS v protsesse kampanii [Method of statistical calculation of the core of a fast reactor taking into account the change in shape of the fuel assembly during the campaign]. Preprint FEI-1845 – Preprint IPPE-1845. Obninsk, IPPE Publ., 1987. 16 p.
- Kazachkovsky O.D., Sorokin A.P., Zhukov A.V., Ushakov P.A., Kriventsev V.I., Titov P.A. Stokhasticheskie neravnomernosti temperaturnykh poley v formoizmenennykh TVS bystrykh reaktorov [Stochastic non-uniformities of temperature fields in modified fuel assemblies of fast reactors]. Preprint FEI-1678 – Preprint IPPE-1678. Obninsk, IPPE Publ., 1985. 24 p.
- Zhukov A.V., Sorokin A.P., Ushakov P.A., Matyukhin N.M., Tikhomirov B.B., Titov P.A., Mikhin V.I., Mantlik F., Shultz V. Teplofizicheskoe obosnovanie temperaturnykh rezhimov TVS bystrykh reaktorov s uchetom faktorov peregreva (temperaturnye polya, faktory peregreva) [Thermophysical justification of temperature regimes of fuel assemblies of fast reactors taking into account overheating factors (temperature fields, overheating factors)]. Preprint FEI-1778 – Preprint IPPE-1778. Obninsk, IPPE Publ., 1986. 44 p.
- Sorokin G.A., Zhukov A.V., Bogoslovskaya G.P., Sorokin A.P. Method of statistical calculation of fast reactor core with account of influence of fuel assembly form change in process of campaign and other factors. LMFR core thermohydraulics status and prospects. IAEA-TECDOC-1157. Vienna: IAEA, 2000, pp. 235–249.
- Sorokin A.P., Kuzina Yu.A., Berensky L.L., Denisova N.A., Tikhomirov B.B. Modelirovanie formirovaniya temperaturnogo polya aktivnoy zony reaktorov na bystrykh neytronakh s uchetom stokhasticheskogo otkloneniya parametrov s ispol'zovaniem metoda Monte-Karlo [Modeling the formation of the temperature field of the active zone of fast neutron reactors taking into account the stochastic deviation of parameters using the Monte Carlo method]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology Series: Nuclear and Reactor Constants, 2022, issue 1, pp. 125–143. Available at: https://vant.ippe.ru/year2022/1/thermal-physics-hydrodynamics/2122-12.html (accessed 19.08.2025).
- Kravchenko I.N., Bagdasarov Yu.E., Likhachev Yu.I. Raschet na prochnost' tvelov i shestigrannogo chekhla TVS s uchetom sovmestnogo deformirovaniya puchka tvelov i chekhla v protsesse oblucheniya v aktivnoy zone bystrogo reaktora [Calculation of the strength of fuel rods and a hexagonal casing of a fuel assembly taking into account the combined deformation of the fuel rod bundle and casing during irradiation in the core of a fast reactor]. Preprint FEI-1840 – Preprint IPPE-1840. Obninsk, IPPE Publ., 1987. 23 p.
- Peregudov A.A. Programmnyy kompleks dlya rascheta neytronno-fizicheskikh kharakteristik bystrykh re-aktorov i otsenki ikh pogreshnostey. Avtoreferat dis. kand. tekh. nauk[Software package for calculating neutron-physical characteristics of fast reactors and assessing their errors. Diss. cand. tech. sci. abstract]. Obninsk, IPPE, 2015. 21 p.
- Mishin V.A. Vychislitel'nyy kompleks dlya raschetnogo soprovozhdeniya izmereniy, vypolnennykh na energeticheskikh bystrykh reaktorakh. Avtoreferat dis. kand. tekh. nauk [Computing complex for calculation support of measurements performed on fast power reactors. Diss. cand. tech. sci. abstract]. Obninsk, IPPE, 2025. 21 p.
- Sorokin A.P., Trufanov A.A., Bogoslovskaya G.P., Denisova N.A. Issledovaniya vliyaniya radiatsionnogo formoizmeneniya TVS na temperaturnyy rezhim i napryazhenno-deformirovannoe sostoyanie obolochki tvelov [Studies of the influence of radiation deformation of fuel assemblies on the temperature regime and stress-strain state of the fuel rod cladding]. Nauchno-tekhnicheskiy sbornik “Itogi nauchno-tekhnicheskoy deyatel'nosti otdeleniya bezopasnosti YaEU za 2015 god”. Pod obshchey redaktsiey A.A. Trufanova, A.P. Sorokina [Scientific and technical collection “Results of scientific and technical activities of the NPI safety department for 2015”. Ed. A.A. Trufanov, A.P. Sorokin]. Obninsk: ONTI SSC RF – IPPE, 2016. Pp. 66–78.
- Sorokin A.P., Bogoslovskaya G.P., Trufanov A.A., Denisova N.N. Investigation of the Effect of Radiation-Induced Shape Change of Fuel Assemblies on the Temperature Regime and Stress-Strain State of Fuel-Element Cladding. At Energy, 2016, vol. 120, issue 6, pp. 418–425. DOI: https://doi.org/10.1007/s10512-016-0151-6.
- Sorokin G.A., Ninokata H., Endo H., Efanov A.D., Sorokin A.P., Ivanov E.F., Bogoslovskaya G.P., Ivanov V.V., Volkov A.D., Zueva I.R. Eksperimental'noe i raschetnoe modelirovanie teploobmena pri kipenii zhidkogo metalla v sisteme parallel'nykh teplovydelyayushchikh sborok v rezhime estestvennoy konvektsii [Experimental and computational modeling of heat transfer during boiling of liquid metal in a system of parallel fuel assemblies in the natural convection mode]. Izvestiya vuzov. Yadernaya energetika, 2005, no. 4, pp. 92–106.
- Sorokin G.A., Sorokin A.P. Experimental and numerical investigations of liquid metal boiling in fuel subassemblies under natural circulation conditions. Proc. of the First COE-INES International Symposium, INES-1. The Progress in Nuclear Energy Journal. Tokyo, Japan, October 31 – November 4, 2004. 2005, vol. 47, no 1–4, pp. 656–663.
- Sorokin G.A., Ninokata H., Sorokin A.P. et al. Numerical Study of Liquid Metal Boiling in the System of Parallel Bundles under Natural Circulation. Journal of Nuclear Science Technology, 2006, vol. 43, no. 6, pp. 623–634.
- Sorokin A.P., Denisova N.A., Kuzina Yu.A. et al. Study of alkaline coolant boiling in the fuel assemblies of fast reactors in emergency modes with natural convection. At Energy, 2024, vol. 136, issue 5–6, pp. 259–271. DOI: https://doi.org/10.1007/s10512-024-01159-8.
- Yuryev Yu.S., Vladimirova L.I., Morozova S.I. Funktsii, zamykayushchie sistemu uravneniy gidrodinamiki i teploobmena v mezhtrubnom prostranstve reaktorov i teploobmennikov kak v poristom tele [Functions closing the system of equations of hydrodynamics and heat transfer in the intertube space of reactors and heat exchangers as in a porous body]. Preprint FEI-1621 – Preprint IPPE-1621. Obninsk, IPPE Publ., 1984. 20 p.
- Bayaskhalanov M.V. Modelirovanie teplogidravlicheskikh protsessov v aktivnykh zonakh bystrykh reaktorov s zhidkometallicheskim teplonositelem v priblizhenii anizotropnogo poristogo tela. Avtoreferat dis. kand. tekh. nauk[Modeling of thermal-hydraulic processes in core of fast reactors with liquid metal coolant in the approximation of an anisotropic porous body. Diss. cand. tech. sci. abstract]. Автореферат диссертации на соискание ученой степени кандидата технических наук. Moscow, NRNU MEPhI, 2025. 23 p.
- Bayaskhalanov M.V., Merinov I.G., Kharitonov V.S., Korsun A.S. Modelirovanie trekhmernykh teplogidravlicheskikh protsessov v aktivnykh zonakh reaktorov s zhidkometallicheskim teplonositelem v priblizhenii anizotropnogo poristogo tela [Modeling of three-dimensional thermal-hydraulic processes in core of reactors with liquid metal coolant in the approximation of an anisotropic porous body]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology Series: Nuclear and Reactor Constants, 2024, issue 2, pp. 243–258.
- Shvetsov Yu.E., Kuznetsov I.A., Volkov A.V. GRIF-SM – Komp'yuternyy kod dlya analiza tyazheloy avarii v reaktore s natrievym okhlazhdeniem [GRIF-SM – Computer code for analyzing a severe accident in a sodium-cooled reactor]. Mezhdunarodnyy seminar “Bezopasnost' bystrykh reaktorov s natrievym okhlazhdeniem” [International Seminar “Safety of Sodium-Cooled Fast Reactors”]. Obninsk, Russia, October 3–7, 1994, vol. 2.
- Kashcheev M.V. Modelirovanie tyazhelykh avariy v obosnovanie bezopasnosti bystrykh reaktorov s natrievym teplonositelem. Avtoreferat dis. dokt. tekh. nauk [Modeling severe accidents to justify the safety of fast reactors with sodium coolant. Diss. dr. tech. sci. abstract]. Moscow, Москва: FGBOU VO “NIU MEI”, 2018. 40 p.
- Bayaskhalanov M.V., Merinov I.G., Kharitonov V.S., Korsun A.S. Primenenie priblizheniya anizotropnogo poristogo tela dlya issledovaniya protsessov teplomassoperenosa v puchkakh sterzhney s razlichnymi sposobami distantsionirovaniya, okhlazhdaemykh zhidkometallicheskim teplonositelem [Application of the anisotropic porous body approximation to study heat and mass transfer processes in rod bundles with different spacing methods cooled by a liquid metal coolant]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology Series: Nuclear and Reactor Constants, 2023, issue 2, pp. 173–187.
- Lykov A.V. Teplomassoobmen (spravochnik) [Heat and Mass Transfer (handbook)]. Moscow, Energy Publ., 1971, 560 p.
- Loitsyansky L.G. Mekhanika zhidkosti i gaza [Mechanics of liquids and gases]. Moscow, Nauka Publ., 1973. 295 p.
- Nigmatulin R.N. Osnovy mekhaniki geterogennykh sred [Fundamentals of mechanics of heterogeneous media]. Moscow, Nauka Publ., 1978. 336 p.
- Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Argonne National Laboratory, USA, 1975. 249 p.
- Chawla T.C., Ishii M. Two-Fluid Model of Two-Phase Flow in a Pin Bundle of a Nuclear Reactor. International Journal of Heat and Mass Transfer, 1980, vol. 23, no. 7, pp. 991–1001.
- Lahey Jr. R.T., Drew D.A. The Three-Dimentional Time and Volume Averaged Conservation Equation of Two-Phase Flow. Advanced Nuclear Science and Technology. New York: Plenum Press, and London, 1988. Vol. 20, pp. 1–69.
- Ninokata H. Advances in Subchannel Analysis for Boiling Two-Phase Flows in Rod Bundles. Proc. of the International Seminar on Subchannel Analysis. Subchannel Analysis in Fast Reactors, ISSCA’92. Tokyo, October 30, 1992, pp. 15–68.
- Sorokin G.A., Zhukov A.V., Avdeev E.F., Sorokin A.P. Modelirovanie teplogidravlicheskikh protsessov v teplovydelyayushchikh sborkakh bystrykh reaktorov s uchetom vliyaniya kipeniya, deformatsii i drugikh faktorov [Modeling of thermal-hydraulic processes in fuel assemblies of fast reactors taking into account the influence of boiling, deformation and other factors]. Preprint FEI-1778 – Preprint IPPE-1778. Obninsk, IPPE Publ., 1998. 37 p.
- Kornienko Yu.N., Kuzevanov V.S., Sorokin A.P. The Technique of Calculation of Non-equilibrium Two-Phase Flows in Pin Bundles Using Two Dimensional Application in Subchannel Approximation. Proc. of the Winter Annular Meeting of ASME. Advanced in Gas Liquid Flows. Dallas, Texas, Nov. 25–30, 1990, FED-Vol, 99, HID-Vol, 155. New York: ASME, 1990. Pp. 321–330.
- Kelli J.E., Kazimi M.S. Development of the Two-Fluid Multidimensional Code THERMIT for LWR Analysis. AIChE Simp. Ser., 1980, vol. 76, no. 199, p. 149.
- Ishii M., Mishina K. Two-Fluid Model and Hydrodynamic Constitutive Relations. Nuclear Engineering and Design, 1984, vol. 82, no. 2–3, pp. 107–126.
- Kornienko Yu.N. Razrabotka i issledovanie kvazidvumernykh metodov rascheta neravnovesnykh dvukhfaznykh potokov dlya statsionarnykh i perekhodnykh rezhimov YaEU. Dis. cand. tekh. nauk[Development and study of quasi-two-dimensional methods for calculating nonequilibrium two-phase flows for stationary and transient modes of nuclear power plants. Diss. cand. tech. sci.]. Obninsk, IPPE, 1988.
- Sorokin G.A., Zhukov A.V., Avdeev E.F., Sorokin A.P. Sistema zamykayushchikh sootnosheniy v ramkakh modeli pokanal'nogo teplogidravlicheskogo analiza aktivnoy zony yadernykh reaktorov [System of closing relations within the frame-work of the model of channel-by-channel thermal-hydraulic analysis of the core of nuclear reactors]. Preprint FEI-2829 – Preprint IPPE-2829. Obninsk, IPPE Publ., 2000. 36 p.
- Sha W.T., Scmitt R., Huebotter P.R. Boundary-Value Thermal Hydraulic Analysis of a Reactor Fuel Bundle. Nuclear Engineering, 1976, no. 2, pp. 140–160.
- Schor A.L., Kazimi M.S., Todreas N.E. Advanced in Two-Phase Flow Modeling for LMFBR Applications. Nuclear Engineering and Design, 1984, vol. 82, no. 1–3, pp. 127–155.
- Gorchakov M.K., Kolmakov A.P., Yuryev Yu.S. Metodika priblizhennogo modelirovaniya aktivnoy zony reaktora [Methodology of approximate modeling of the reactor active zone]. Preprint FEI-597 – PreprintIPPE-597. Obninsk, IPPE Publ., 1975. 19 p.
- Esposito V.J., Spencer A.C. Can Macro-Micro Type Flow Computation Schemes be Reactor Engineering Tools? Proc. of the American Science Meeting on Reactor Safety. Salt Lake City, Utah, 1973, pp. 501–515.
- Khan E.V. Analytical Investigation and Design of a Model Hydrodynamically Simulating a Prototype PWR Core. Nuclear Technology, 1972, vol. 16, no. 3, pp. 479–496.
- Menant В., Basque G., Grand D. Theoretical Analysis and Experimental Evidence of Three Types of Thermohydraulic Incoherency in Undisturbed Cluster Geometry. IWGFR. Vienna: IAEA, 1979, pp. 134–151.
- Khudasko V.V., Kardash D.Y., Grachev N.S. Heat transfer in the critical and supercritical zones of sodium-water steam generators. At Energy, 1986, vol. 61, issue 6, pp. 569–573. DOI: https://doi.org/10.1007/BF01126076.
- Rowe D.S. Matematicheskaya model' dlya issledovaniya perekhodnykh protsessov v podkanalakh sborki teplovydelyayushchikh elementov yadernogo reaktora [Mathematical model for studying transient processes in subchannels of a nuclear reactor fuel element assembly]. Teploperedacha – Heat Transfer, 1973, vol. 95, issue 8, pp. 67–73.
- Wheeler C.L, Mac G.C., Koresar D.C. COBRA-IIA: A Program for Thermal-Hydraulic Analysis in Very Large Bundle of Fuel Pins. BNWL-1422. Richland: Battelle-Pacific North-West Laboratories, 1970.
- Miao C.C., Baumann W.L., Domanus H.M. et al. Two-Phase Thermal-Hydraulic Simulations with COMMIX-2. Nuclear Engineering and Design, 1984, vol. 82, no. 2, pp. 205–214.
- Ninokata H., Okano T. SABENA: An Advanced Subchannel Code for Sodium Boiling Analysis. Proc. 3rd Topical Meeting on Reactor Thermal-Hydraulics. Newport, Rhode Iland, 1985.
- Ninokata H. Analysis of Low-heat-flux Sodium Boiling test in a 37-Pin Bundle by the Two-Fluid Model Computer Code SABENA. Nuclear Engineering and Design, 1986, vol. 97, issue 2, pp. 233–246. DOI: https://doi.org/10.1016/0029-5493(86)90111-1.
- Mingaleeva G.S., Mironov Y.V. Thermohydraulic calculation of multirod heat-liberating piles cooled by single-phase heat carrier. At Energy, 1980, vol. 48, issue 5, pp. 306–311. DOI: https://doi.org/10.1007/BF01126838.
- Okamoto Y., Hishida M., Akino N. Hydraulic Performance in Rod Bundles of Fast Reactor Fuel Pressure Drop Vibration and Mixing Coefficient. Progress in Sodium-Cooled Fast Reactor Engineering. Monako. IAEA/SM-130/5. 1970.
- Baumann W., Hoffman H. Coolant Cross Mixing of Sodium Flowing in Line through. Spacer Arrangements. International Heat Transfer Seminar. Trogir, Yugoslavia, 1971.
- Zhukov A.V., Muzhanov A.V., Sorokin A.P., Titov P.A., Ushakov P.A. Mezhkanal'noe vzaimodeystvie teplonositelya v reshetkakh tsilindricheskikh sterzhney [Interchannel interaction of coolant in lattices of cylindrical rods]. Preprint FEI-413 – Preprint IPPE-413. Obninsk, IPPE Publ., 1973. 57 p.
- Zernick W., Currin H.B., Elyath E., Previti G. THINC – A Thermal Hydraulic Interaction Code for Semi-Open or Closed Channel. WCAP 3704, 1962.
- Novendstern E.H. Mixing Model for Wire-Wrap Fuel Assemblies. Transactions of the American Nuclear Society, 1972, vol. 15, no. 2, p. 866.
- Ginsberg T. Forced-Flow Interchannel Mixing Model for Fuel Rod Assemblies Utilizing a Helical Wire-Wrap Spacer System. Nuclear Engineering and Design, 1972, vol. 22, no. 1, pp. 28–42.
- Maggee P.M. Modelling of Flow Sweeping Effects in Wire-Wrapped Rod Bundles. Transactions of the American Nuclear Society, 1972, vol. 15, no. 1, pp. 406.
- Rowe D.S. Thermal-Hydraulic Analysis for Rod Bundle Nuclear Fuel Elements. Proc. of the Heat Transfer Conference. Paris-Versailles, 1970, vol. 3, FC 7.13, pp. 1–12.
- Bowring R.W. НАМВО. A Computer Programme for the Hydraulic and Burnout Characteristics of the Rod Clusters (Part 1) General Description. AEEW-R524. London. 1967.
- Bowring R.W. НАМВО. A Computer Programme for the Hydraulic and Burnout Characteristics of the Rod Clusters (Part 2) The Equations. AEEW-R582. London. 1968.
- Plas E. Programme FLICA-III Pour l'Etude Thermohydraulic de Reactors et de Houcles d'Essens. Report on the France-Soviet Seminar. Moscow. 1974.
- Mironov Yu.V., Shpanskii S.V. Distribution of the parameters of two-phase flow over the cross section of a channel with a fuel rod bundle. At Energy, 1975, vol 39, issue 6, pp. 1059–1065. DOI: https://doi.org/10.1007/BF01119567.
- Chiu C., Todreas N.E. Prediction of the Temperature Field in a Breeder Reactor Including Inter Assembly Heat Transfer. Nuclear Engineering and Design, 1975, vol. 35, no. 3, pp. 423–440.
- Chelemer H., Wiesman J., Tong N.S. Subchannel Thermal Analysis of the Rod Bundle Cores. Nuclear Engineering and Design, 1972, vol. 21, no. 1, pp. 35–46.
- Mironov Yu.V., Sakovich E.V., Shpanskiy S.V. Analiz gidraliki i krizisa teploobmena v puchkakh gladkikh sterzhney s uchetom neravnomernosti raspredelenie teplogidravlicheskikh parametrov po secheniyu kanala. V kn.: Seminar TF-74 “Issledovanie kriticheskikh teplovykh potokov v puchkakh sterzhney” [Analysis of hydraulics and heat transfer crisis in smooth rod bundles taking into account the non-uniform distribution of thermal-hydraulic parameters over the channel cross-section. In book: Seminar TF-74 “Study of critical heat flows in rod bundles”]. Moscow, 1974, pp. 189–200.
- Chiu C., Todreas N.E., Rosenow W.M. Turbulent Flow Split Model and Supporting Experiments for Wire-Wrapped Core Assemblies. Nuclear Technology, 1980, vol. 50, no. 3, pp. 40–52.
- Hirao S., Nakao N. DIANA – A Fast and High Capacity Computer Code for Interchannel Coolant Mixing in Rod Arrays. Nuclear Engineering and Design, 1974, vol. 30, no. 3, pp. 214–222.
- Wantland J.L. ORRIBLE: A Compute Program Flow and Temperature Distribution in an 19-Rod LMFBR Fuel Assembly. Nuclear Technology, 1974, vol. 24, no. 2, pp. 168–175. DOI: doi.org/10.13182/NT74-A31473.
- Khan E.V., Hinds A., Cheatham R.L. The CORTRAN Code for While Core LMFBR Transient Thermal Hydraulic Analysis. Transactions of the American Nuclear Society, 1979, vol. 31, no. 1, pp. 537–539.
- Perneczky L., Szabados L., Kovacs L.M. HOTRAN-2: A Code for Coolant Flow Transient Calculations of Water-Coolant Reactor Cores. KFKI-1977-16. Budapest. 1977.
- Masterson R.W., Wolf L. An Efficient Multidimensional Numerical Method for the Thermal Hydraulic Analysis of Nuclear Reactor Core. Nuclear Engineering and Design, 1977, vol. 64, no. 3.
- Rowe S.D. COBRA IIIC; A Digital Computer Program for Steady State and Transient Thermal Analysis of Rod Bundle Nuclear Fuel Elements. BNWL-1695. Richland, Washington, 1973.
- Van der Ros. A Two-Phase Flow Exchange between Interacting Hydraulic Channels. WW015-R, 1970.
- Kovacs L.M., Szabados L. TURMIX – Computer Program to Determine Single-Phase Interchannet Mixing in Reactor Fuel Bundles. KFKI-73-16, 1973.
- Sha W.T., Schmitt R.C., Huebotter P.R. Boundary-Value Thermal-Hydraulic Solution in a Reactor Fuel Bundle. 75-HT-48. New York: ASME United Engineering Centre, 1976.
- Chen B.C-J., Chien T.H. Sha W.T. BODYFIT-2PC: Steady State Transient Three-Dimensional, Two-Phase Thermal Hydraulic Computer Code for Rectangular Rod Bundle. Transactions of the American Nuclear Society, 1981, vol. 35, no. 2.
- Marr W. COBRA-3M: A Modified Version of COBRA Analyzing Thermal-Hydraulics in Small Pin Bundles. Nuclear Engineering and Design, 1979, vol. 53, pp. 223–235.
- Wallis Graham B. One-Dimensional Two-Phase Flow. McGraw-Hill, 1969. 408 p.
- Macdougall J.D., Lillington J.N. The SABRE Code for Fuel Rod Bundle Cluster Thermohydraulics. Nuclear Engineering and Design, 1984, vol. 82, no. 2–3, pp. 171–190.
- Arai M., Hirata H. Numerical Calculation for Two Phase Flow Analysis in Pin Bundles. Nuclear Engineering and Design, 1984, vol. 82, no. 2–3, pp. 157–169. DOI: https://doi.org/10.1016/0029-5493(84)90209-7.
- Wheeler C.L. COBRA-IV-I: An Interim Version of COBRA for Thermal-Hydraulic Analysis of Rod Bundle Fuel Elements and Cores. BNWL-1962. Richland: Battelle-Pacific North-West Laboratories, 1976.
- Bottony H., Willerding G. Advanced Solution Algorizms for Transition Multidimensional Thermohydraulic Flow Problems in Complex Geometries with the Programme COMMIX-2/KfK. Nuclear Engineering and Design, 1987, vol. 100, no. 3, pp. 351–365. DOI: https://doi.org/10.1016/0029-5493(87)90085-9.
- Dorr B., Homann Cy., Struwe D. State of Development at the Computer Programme BACCHUS-3D/TP for the Discriiption of Transient Two Phase LMFBR Fuel Pin Bundles. Nuclear Engineering and Design, 1987, vol. 100, no. 3.
- Mijaguchi K., Takahashi J. Thermal-Hydraulic Experiments with Simulated LMFBR Subassemblies under Nominal and Non-Nominal Operating Conditions. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna: IAEA, 1979. Pp. 58–75.
- Kumaev V.Ya., Leonchuk M.P., Dvortsova L.I. Metodika chislennogo rascheta trekhmernykh techeniy teplonositelya v puchkakh sterzhney [Methodology for numerical calculation of three-dimensional coolant flows in rod bundles]. Preprint FEI-1733 – Preprint IPPE-1733. Obninsk, IPPE Publ., 1985.
- Ninokata H., Aritomi M., Anegawa T., Hara T., Kamo H., Kusuno S., Mishima K., Morooka S., Yamamoto Y., Nishida K., Sadatomi M., Sou A., Yabushita Y. Development of the NASCA Code for Predicting Transient BT Phenomena in BWR Rod Bundles. Proc. of the Workshop on Advanced Thermal-Hydraulic and Neutronic Codes: Current and Future Applications. Barcelona, April 10–13, 2000. NEA-CSNI-R--2001-2. Pp. 576–588.
- Kim W.S., Kim Y.G., Young-Jin Kim Y.J. Subchannel Analysis Code MATRA-LMR for Wire Wrapped LMR Subassembly. Annual of Nuclear Energy, 2002, vol. 29, pp. 303–321.
- Chvetsov Yu., Volkov A. 3-D Thermal Hydraulic Analysis of Transient Heat Removal from Fast Reactor Core Using Immersion Coolers. LMFR Core Thermohydraulics: Status and Prospects. IAEA-TECDOC-1057. Vienna: IAEA, June 2000. Pp. 85–98.
- Ashurko Yu.M., Volkov A.V., Raskach K.F. et al. Neutron-Physical Model Impact on the Calculation of a Serious Accident with Sodium Boiling in a Fast Reactor. At Energy, 2017, vol. 122, issue 4, pp. 217–225. DOI: https://doi.org/10.1007/s10512-017-0259-3.
- Davies S. Coupling Subchannel Analysis Tools with Advanced Multiscale Core Simulation. Thesis diss. dr. phil., 2024.
- Veselov A.M., Zimin V.G., Korsun A.S., Merinov I.G., Romanin S.D., Kharitonov V.S., Shchukin N.V. Analiz nestatsionarnykh perekhodnykh protsessov v aktivnoy zone reaktora s zhidkometallicheskim teplonositelem s primeneniem koda SKETCH-THEHYCO [Analysis of non-stationary transient processes in the active zone of a reactor with liquid metal coolant using the SKETCH-THEHYCO code]. Izvestiya vuzov. Yadernaya energetika, 2006, no. 4, pp. 24–32.
- Harlow F.H., Melch J.E. Numerical Calculation Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids, 1965, vol. 8, pp. 2182–2189. DOI: https://doi.org/10.1063/1.1761178.
- Steward C.W., Rowe D.S. Advanced Continuous Fluid Eulerian Computation Scheme for Flows with Large Density Gradient. Transactions of the American Nuclear Society, 1976, vol. 24.
- Patankar S. Chislennyye metody resheniya zadach teploobmena i dinamiki zhidkosti [Numerical methods for solving problems of heat transfer and fluid dynamics]. Moscow, Energoatomizdat Publ., 1984. 152 p.
- Bessho Y., Uchikawa S. Boiling Transient Prediction for BWR Fuel Bundles by Subchannel Analysis Program MENUETT. Nuclear Engineering and Design, 1987, vol. 99, no. 1, pp. 239–236.
- Basehore K.L., Todreas N.E. SUPERENERGУ-2: A Multi Assembly, Steady-State Computer Code for LMFBR Core Thermal-Hydraulic Analysis. PNL-3379, C00-2245-57TR. Richland: Pacific Northwest Laboratory, 1980. 208 p.
- Markley R.A., Engel F.C. LMFBR Blanket Assembly Heat Transfer and Hydraulic Test Data Evaluation. Thermodynamic of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. Summery Report. Vienna: IAEA. 1979. Pp. 229–253.
- Ninokata H., Merzari E. Computational fluid dynamics and simulation based design approach for tight lattice nuclear fuel pin subassemblies. Proc. of NURETH-12. Pennsylvania, USA, 2007, Log no: KN#6.
- Baglietto E., Ninokata H. CFD Modeling of Secondary Flows in Fuel Rod Bundles. Proc. of NUTHOS-6. Nara, Japan, 2004.
- Chang D., Tavoularis S. Simulations of turbulence, heat transfer and mixing across narrow gaps between rod-bundle subchannels. Nuclear Engineering and Design, 2008, vol. 238, no. 1, pp. 109–123.
- Sorokin A.P., Kuzina Yu.A., Denisova N.A. Gidrodinamika turbulentnykh potokov v TVS bystrykh reaktorov (pole skorosti i mikrostruktura turbulentnosti) [Hydrodynamics of turbulent flows in fuel assemblies of fast reactors (velocity field and turbulence microstructure)]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 2, pp. 139–166.
- Kim M., Lim J., Kim S., Jee S., Park D. Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer. Computer Methods in Applied Mechanics and Engineering, 2020, vol. 371, p. 113287. DOI: https://doi.org/10.1016/j.cma.2020.113287.
- Biemüller M., Meyer L., Rehme K. Large eddy simulation and measurement of the structure of turbulence in two rectangular channels connected by a gap. Proc. 3rd Internat. Symp., Eng. Turbulence Modelling and Experiments. Elsevier, Amsterdam, 1996, pp. 249–258.
- Baglietto E., Ninokata H. A turbulence model study for simulating flow inside tight lattice rod bundles. Nuclear Engineering and Design, 2005, vol. 235, pp. 773–784. DOI: https://doi.org/10.1016/j.nucengdes.2004.10.007.
- Merzari E., Ninokata H., Baglietto E. Corrigendum to Numerical simulation of flows in tight-lattice fuel bundles. Nuclear Engineering and Design, 2008, vol. 238, pp. 1703–1719. DOI: https://doi.org/10.1016/j.nucengdes.2008.01.001.
- Chandra L., Roelofs F., Houkema M., Jonker B. A stepwise development and validation of a RANS based CFD modelling approach for the hydraulic and thermal hydraulic analyses of liquid metal flow in a fuel assembly. Nuclear Engineering and Design, 2009, vol. 239, pp. 1988–2003.
- Krepper E., Končar B., Egorov Y. CFD modelling of subcooled boiling-Concept, validation and application to fuel assembly design. Nuclear Engineering and Design, 2007, vol. 237, pp. 716–731.
- Cheng X., Tak N.I. CFD analysis of thermal-hydraulic behavior of heavy liquid metals in sub-channels. Nuclear Engineering and Design, 2006, vol. 236, pp. 1874–1885.
- Gajapathy R., Velusamy K., Selvaraj P., Chellapandi P., Chetal S. A comparative CFD investigation of helical wire-wrapped 7, 19, 37 fuel pin bundles and its ex tendibility to 217 pin bundle. Nuclear Engineering and Design, 2009, vol. 239, pp. 2279–2292.
- Roelofs F., Gopala V.R, Chandra L., Viellieber M., Class A. Simulating fuel assemblies with low resolution CFD approaches. Nuclear Engineering and Design, 2012, vol. 250, pp. 548–559. DOI: https://doi.org/10.1016/j.nucengdes.2012.05.029.
- Zhukov A.V., Kuzina Yu.A., Sorokin A.P. Analysis of a Benchmark Experiment on the Hydraulics and Heat Transfer in a Liquid-Metal-Cooled Assembly of Fuel-Element Simulators. At Energy, 2005, vol. 99, issue 5, pp. 770–781. DOI: https://doi.org/10.1007/s10512-006-0015-6.
- Efanov A.D., Sorokin A.P., Matjuhin N.M., Chernonog V.L. The experimental base of SSC RF-IPPE for research of liquid metals heat and mass transfer. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125. Vienna: IAEA, 2005. Pp. 8–25.
- Zhukov A.V., Kuzina J.A., Sorokin A.P., Bogoslovskaia G.P., Filin A.I., Leonov V.N., Smirnov V.P., Sila-Novitskii A.G. Specification of the benchmark problem “Hydraulics and heat transfer in the model pin bundles with liquid metal coolant”. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125. Vienna: IAEA, 2005. Pp. 138–172.
- Kuzina Yu.A. Teplogidravlicheskoe modelirovanie v obosnovanie aktivnykh zon reaktorov tipa BREST. Dis. kand. tekh. nauk[Thermal-hydraulic modeling to justify the active zones of BREST-type reactors. Diss. cand. tech. sci.]. Obninsk, IPPE, 2003.
- Afremov D.A., Smirnov V.P., Yashnikov D.A. Calculations using BRS-TVS.R code as a part of the standard problem “Hydraulics and heat exchange in model rod assemblies with liquid-metal cooling” including uncertainty analysis. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125, Vienna: IAEA, 2005. Pp. 173–196.
- Ohshima H., Imai Y. Thermal Hydraulic Analysis of Model Pin Bundle with Liquid Metal Coolant – Simulation Results of Standard Problem. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125, Vienna: IAEA, 2005. Pp. 197–211.
- Peña A., Esteban G.A. Benchmark Problem: Hydraulics and Heat Transfer in the Model Pin Bundles with Liquid Metal Coolant. UPV-EHU Calculations. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125, Vienna: IAEA, 2005. Pp. 247–160.
- Carlsson J., Wider H. Results of Calculations of the Standard Problem “Hydrodynamics and Heat Transfer in a Subassembly Model Cooled by Liquid Metal Coolant”. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125, Vienna: IAEA, 2005. Pp. 212–226.
- Son H.M., Suh K.Y. Result of Calculations of the Standard Problem Hydraulics and Heat Transfer in a Subassembly Model Cooled by Liquid Metal Coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11 Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material. TWG-FR/125, Vienna: IAEA, 2005. Pp. 227–246.
- Sorokin A.P., Kuzina Yu.A., Denisova N.A. Gidrodinamika turbulentnykh potokov v TVS bystrykh reaktorov (pole skorosti i mikrostruktura turbulentnosti) [Hydrodynamics of turbulent flows in fuel assemblies of fast reactors (velocity field and turbulence microstructure]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 2, pp. 139–166.
- Kim M., Lim J., Kim S., Jee S., Park D. Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer. Computer Methods in Applied Mechanics and Engineering, 2020, vol. 371, p. 113287. DOI: https://doi.org/10.1016/j.cma.2020.113287.
- Launder B., Spalding D. Lectures in mathematical models of turbulence. London: Academic Press, 1972. 175 p.
- Menter F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. Proc. of 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference: Fluid Dynamics and Co-located Conferences. Orlando, FL, USA, 1993. DOI: https://doi.org/10.2514/6.1993-2906.
- Zakharov M.Yu., Tikhomirov G.V. Obzor podkhodov k CFD-modelirovaniyu TVS bystrykh reaktorov [Review of approaches to CFD modeling of fuel assemblies of fast reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, issue 2, pp. 121–151.
- Kozelkov A.S., Kurulin V.V., Tyatyushkina E.S., Puchkova O.L. Modelirovanie turbulentnykh techeniy vyazkoy neszhimaemoy zhidkosti na nestrukturirovannykh setkakh s ispol'zovaniem modeli otsoedinennykh vikhrey [Modeling of turbulent flows of viscous incompressible fluid on unstructured grids using the detached vortex model]. Matematicheskoe modelirovanie – Mathematical Modeling, 2014, vol. 26, no. 8, pp. 81–96.
- Chen S., Xia Z., Pei S. et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics, 2012, vol. 703, pp. 1–28. DOI: https://doi.org/10.1017/jfm.2012.150.
- He Y., Li Q., Wang Y., Tang G. Lattice Boltzmann method and its applications in engineering thermophysics. Chinese Science Bulletin, 2009, vol. 54, no. 22, pp. 4117–4134. DOI: https://doi.org/10.1007/s11434-009-0681-6.
- Girimaji S.S. Partially-Averaged Navier-Stokes Model for Turbulence: A Reynolds-Averaged Navier-Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 2005, vol. 73, no. 3, pp. 413–421. DOI: https://doi.org/10.1115/1.2151207.
- Menter F.R., Egorov Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow. Turbulence and Combustion, 2010, vol. 85, no. 1, pp. 113–138. DOI: https://doi.org/10.1007/s10494-010-9264-5.
- Adamyan D.Yu., Strelets M.Kh., Travin A.K. Effektivnyy metod generatsii sinteticheskoy turbulentnosti na vkhodnykh granitsakh LES oblasti v ramkakh kombinirovannykh RANS-LES-podkhodov k raschetu turbulentnykh techeniy [An effective method for generating synthetic turbulence at the input boundaries of the LES region within the framework of combined RANS-LES approaches to calculating turbulent flows]. Matematicheskoe modelirovanie – Mathematical Modeling, 2011, vol. 23, no 7, pp. 3–19.
- Aksyonov A.A. FlowVision: Industrial'naya vychislitel'naya gidrodinamika [FlowVision: Industrial computational fluid dynamics]. Komp'yuternye issledovaniya i modelirovanie – Computer research and modeling, 2017, vol. 9, no. 1, pp. 5–20.
- Aksenov A.A., Gudzovsky A.V., Dyadkin A.A., Tishin A.P. Smeshenie gazov pri vduve nizkonapornoy strui v poperechnyy potok [Mixing of gases during injection of a low-pressure jet into a cross flow]. Izvestiya Rossiyskoy akademii nauk. Seriya: Mekhanika zhidkosti i gaza – Bulletin of the Russian Academy of Sciences. Series: Mechanics of Liquids and Gases, 1996, no. 3, pp. 67–74.
- Aksenov A.A. Modelirovanie sil'nogo vzaimodeystviya zhidkosti i konstruktsii programmnym kompleksom FlowVision-Abaqus [Modeling of strong interaction between liquid and structure using FlowVision-Abaqus software package]. Trudy konferentsii PAVT-2008 [Proc. of the PAVT-2008 Conference]. St. Petersburg, Russia, January 28 – February 1, 2008.
- Osipov S.L., Rogozhkin S.A., Shepelev S.F., Sazonova M.L., Shmelev V.V. Opyt primeneniya i problemy verifikatsii CFD-kodov v proektakh reaktorov BN [Experience of application and problems of verification of CFD codes in BN reactor designs]. Sbornik dokladov nauchno-tekhnicheskogo seminara “Problemy verifikatsii i primeneniya CFD-kodov v atomnoy energetike” [Proc. of the Scientific and Technical Seminar “Problems of Verification and Application of CFD Codes in Nuclear Power Engineering”]. N.Novgorod, JSC “Afrikantov OKBM”, 2012, pp. 373–382.
- Baglietto E., Ninokata H., Misawa T. CFD and DNS methodologies development for fuel bundle simulations. Nuclear Engineering and Design, 2006, vol. 236, no. 14, pp. 1503–1510. DOI: https://doi.org/10.1016/j.nucengdes.2006.03.045.
- Asmolov V.G., Blinkov V.N., Melikhov V.I., Melikhov O.I., Parfenov Yu.V., Emelyanov D.A., Kiselev A.E., Dolganov K.S. Current state of system thermohydraulic codes and trends in their development abroad. High Temp, 2014, vol. 52, issue 1, pp. 98–109. DOI: https://doi.org/10.1134/ S0018151X14010027.
- RELAP5-3D. Code Manual Volume I: Code Structure, System Models and Solution Methods. INEELEXT 9800834. Idaho National Laboratory, 2005. 600 p.
- TRAC M/Fortran 90 (Version 3.0): Theory Manual. Los Alamos National Laboratory. 2000. LAUR00 910. 923 p.
- Bestion D., Geffraye G. The CATHARE Code. CEA Grenoble Report. SMTH/LDMS/EM/2002. Grenoble: France, 2002. P. 63.
- Lerchl G., Austregesilo H. ATHLET Mod 1.2 Cycle D. User’s Manual. 2001. GRSP1. V. 1. 350 p.
- Jeong J.J., Ha K.S., Chung B.D., Lee W.J. A Multidimensional Thermal Hydraulic System Analysis Code, MARS 1.3.1. J. Korean Nuclear Society, 1999, vol. 31, no. 3, p. 344.
- Vasilenko V.A., Migrov Yu.A., Volkova S.N., Yudov Yu.V., Danilov I.G., Korotaev V.G., Kutyin V.V., Bondarchik B.R., Benediktov D.V. Opyt sozdaniya i osnovnye kharakteristiki teplogidravlicheskogo raschetnogo koda novogo pokoleniya KORSAR [Experience in the creation and main characteristics of the new generation thermal-hydraulic calculation code KORSAR]. Teploenergetika – Thermal Engineering, 2002, no. 11, p. 11.
- Аsmolov V.G., Blinkov V.N., Еfanov А.D., Меlikhov О.I., Sorokin А.P., Strizhov V.F. Problems of Heat and Mass Transfer and Safety in New Generation NPP Designs. Proc. Baltic Heat Transfer Conf. St. Petersburg, Russia, Sept. 19–21, 2007, vol. 1, p. 393.
- Zhang K. The multiscale thermal‐hydraulic simulation for nuclear reactors: A classification of the coupling approaches and a review of the coupled codes. International Journal of Energy Research, 2020, vol. 44, no. 5, pp. 3295–3315. DOI: https://doi.org/10.1002/er.5111.
- Migrov Yu.A., Korotaev V.G., Rumyantsev S.N., Deulin A.A., Tarasova N.V., Bykov M.A., Mokhov V.V., Kudryavtsev O.V. Problemy teplomassoperenosa i bezopasnosti v proektakh AES novogo pokoleniya [Problems of heat and mass transfer and safety in new generation NPP projects]. 8-ya MNTK “Obespechenie bezopasnosti AES s VVER” [8th Scientific and Technical Conference “Ensuring the Safety of NPPs with WWER”]. Podolsk, OKB “GIDROPRESS”, 2013.
- Huber K., Zhou C., Sonntag M., Cheng X., Otic I. Coupled ATHLETOPENFOAM Calculations for PHENIX Natural Convection Test. Proc. of NURETH-15. Pisa, Italy. May 12–17. 2013, p. 11.
- Baviere R., Tauveron N., Perdu F., Carre E. System CFD Coupled Simulation of the PHENIX Reactor Natural Circulation Test. Proc. NURETH-15. Pisa, Italy. May 12–17. 2013, p. 15.
- Macek J., Vyskocil L. Simulation of CDA Opening Test at VVER1000 NPP by Coupled System of ATHLET, DYN3D and FLUENT Codes. Proc. of NURETH-15. Pisa, Italy. May 12–17. 2013, p. 13.
- Mosunova N.A., Alipchenkov V.M., Pribaturin N.A., Strizhov V.F., Usov E.V., Lobanov P.D., Afremov D.A., Semchenkov A.A., Larin I.A. Lead coolant modeling in system thermal-hydraulic code HYDRA-IBRAE/LM and some validation results. Nuclear Engineering and Design, 2020, vol. 359, p. 110463. DOI: https://doi.org/10.1016/j.nucengdes.2019.110463.
UDC 536.24: 621.039.524.4: 621.039.58
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 3, 3:12

 
	