EDN: OCIXEI
Authors & Affiliations
Prudnikov A.G., Mamaev V.K., Severinova V.V.
 Federal Autonomous Institution “Central Institute of Aviation Motors named after P.I. Baranov”, Moscow, Russia
 
  Abstract
  
 
Prudnikov A.G. – Head of Sector, Professor, Dr. Sci. (Tech.).
Mamaev V.K. – Leading Researcher, Cand. Sci. (Phys.-Math.). Contacts: 2, Aviamotornaya st., Moscow,  Russia, 111116. Tel.: +7 (495) 362-1317, (495) 362-13-17,  +7 (999) 966-19-87; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
 Severinova V.V. – Engineer.
Abstract
The  stochastic model of vortex formation and their interaction is proposed, and the  application examples to describe a vortex flame are provided. According to the  vortex model, any shear layer consists of a vortex layer with a cascading  spectrum of large vortices of constant vorticity. The equations of applied  vortex mechanics for intermittent media are presented that define the dynamics  of three different levels of various continuous media mechanics at least: two  co-flowing streams and their vortex layer, each volume of a large vortex, etc.  According to vortex mechanics it is assumed that the loss of kinetic energy  during the inelastic formation of a large vortex from two shifted half-waves  can be manifested as small vortices of volumetric local turbulence, the decaying  energy of which converts this loss into heat. Turbulent vortices in the surface  part of local turbulence arise from secondary shears of the vortex layer on the  external curls of its laminar vortex coils, thereby creating a surface  turbulent mantle that masks the large-vortex skeleton of any layer (wake, jet,  etc.). The role of volumetric local turbulence is evident only in the  combustion fronts of the “retarded” large vortex curls. It determines not the  combustion rate, not the injection rate, but only the completeness of  combustion of the turbulent large vortex in the flame.
Keywords
vortex  boundary layer, turbulent eddies, shear layer, large eddies, pseudoturbulence,  homogeneous combustion, stochastic dynamics, vortex model, continuous medium,  thermal gas aerodynamics
 Article Text (PDF, in Russian)
 References
  
 
 
  - Marsden  D. Popytki ustanovit' sootnosheniye mezhdu uravneniyami Nav'ye – Stoksa i  turbulentnost'yu. V sb. Strannyye attraktory, pod red. Ya.G. Sinaya i  L.P. Shil'nikova [Attempts to establish a relationship between the  Navier-Stokes equations and turbulence. In book: Strange Attractors, edited by  Ya.G. Sinai and L.P. Shilnikov]. Moscow, Mir Publ., 1981. Pp. 7–20.
- Van  Dyke M. Album of liquid and gas flows. Stanford, The Parabolic Press,  1982. 176 p.
- Abramovich  G.N. Prikladnaya gazovaya dinamika. V 2 ch. Ucheb. rukovodstvo: Dlya  vtuzov. 5-ye izd., pererab. i dop [Applied gas dynamics. In 2 parts. Textbook:  For higher technical schools. 5th ed., revised and enlarged].  Moscow, Nauka, Phys.-Math.  Literature Publ., Chief  editor of physical and mathematical literature, 1991.
- Prudnikov  A.G. On vortex combustion. Combust Explos Shock Waves, 2010, vol. 46, issue 6, pp. 623–640. DOI: https://doi.org/10.1007/s10573-010-0083-8.
- Prudnikov  A.G. Uravneniya dvizheniya i strukturnyye parametry svobodnogo sdvigovogo  sloya. Trudy TSIAM [Equations of motion and structural parameters of a  free shear layer Proceedings of CIAM]. Mosco, CIAM Publ., 1987. No. 1191, 56 p. 
- Rauschenbach  B.V., Bely S.A., Bespalov I.V., Prudnikov A.G. et al. Fizicheskiye osnovy  rabochego protsessa v kamerakh sgoraniya vozdushno-reaktivnykh dvigateley [Physical  principles of the working process in combustion chambers of air-jet engines].  Moscow, Mashinostroyeniye, 1964. 526 p.
- Roshko  A. Sructure of turbulent shear flows: a new look. AIAA Journal, 1976,  vol. 14, no. 10, pp. 1349–1357.
- Terekhov  V.I. Turbulentnyy teplomassoperenos v ogranichennykh zakruchennykh potokakh  [Turbulent heat and mass transfer in limited swirling flows]. Inzhenerno-fizicheskii  zhurnal – Journal of Engineering Physics and Thermophysics, 1987,  vol. 53, no. 6, pp. 911–919.
- Prudnikov  A.G., Volynsky M.S., Sagalovich V.N. et al. Protsessy smeseobrazovaniya i  goreniya v vozdushno-reaktivnykh dvigatelyakh [Processes of mixture formation and  combustion in air-jet engine]. Moscow, Mashinostroyeniye Publ., 1971.  356 p.
- Landau L.D., Lifshits E.M. Gidrodinamika [Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p.
- Prudnikov A.G., Mamaev V.K., Aukin  M.K., Severinova V.V. Equations of vortex mechanics of near-wall boundary flows  of high-speed vehicles. NTZh “Polet”, 2022. No. 10. Pp. 12–20.
- Baev V.K., Konstantinovsky V.A.,  Tretyakov P.K. The Investigation of Combustion in Supersonic Stream in a Canal  of Sudden Enlarging. Proc. of the VI International Symposium  Combustion Progresses. Karpacz, August 1979.
- Prudnikov A.G., Koliev M.R.,  Severinova V.V. On the design of bow, lateral, and trailing  thermogasaerodynamic fairings above the flying vehicle external surface. Proc.  of the International Conference on the Methods of Aerophysical Research:  Abstr. Pt. II. Ed. V.M. Fomin. Novosibirsk: Parallel, 2008. Pp. 184–185.
- Prudnikov A.G. Novyy podkhod k  teplogazoaerodinamicheskim protsessam – silovoy osnove sovremennykh i perspektivnykh  aviakosmicheskikh, nazemnykh i morskikh letatel'nykh apparatov [New approach to  thermal and gas aerodynamic processes – the power basis of modern and  prospective aerospace, land and sea aircraft]. Aviakosmicheskaya tekhnika i  tekhnologiya – Aerospace engineering and technology, 2008, no. 1,  pp. 40–50.
  
UDC 532.526
 Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 3, 3:17