EDN: VEWMIG
Authors & Affiliations
Kharitonova N.L.
 National Research Nuclear University Moscow Engineering Physics Institute, Moscow, Russia 
 
 
Kharitonova N.L. – Leading Researcher, Cand. Sci. (Tech.). Contacts: 31, Kashirskoe sh., Moscow, Russia, 115409. Tel.: +7 (499) 324-77-77; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
The article  is devoted to the analysis of thermodynamic data for calculating the  dissociation constant of pure water (the ionic product of water) – Kw,  which is a reference property in the chemistry of water and aqueous solutions.  In 2024, the International  Association for the Properties of Water and Steam (IAPWS) published updated recommendations for  the equation for the ionization constant of water, Kw over a wide range of temperatures and  densities. The article compares the correlation equations for calculating Kw  recommended by IAPWS for the period from 1981 to 2024. The following equation  are considered: (1) the correlation equation for calculation adopted by IAPWS  in 1981 as recommended reference data for temperatures from 0 to 1000 °C and  pressures from 1 to 10,000 bar; (2) a semi-empirical equation for calculating  pKw (pKw ≡ −lg(Kw)), proposed by Lvov – Bandura  in 2007 and then updated in 2019 (IAPWS R11-07(2019)); (3) IAPWS  recommendations adopted in 2024 (IAPWS R11-24), providing for the calculation  of pKw taking into account new experimental data – precision  measurements of the electrical conductivity of high-purity water obtained in  2020–2024. An analysis of the experimental data used in the correlation  equations for calculating pKw in a wide range of temperatures and  densities was performed. It is demonstrated that even when processing the same  set of experimental points, the empirical parameters in the equation for  calculating pKw can differ depending on the method used to extrapolate  the limiting conductivity at infinite dilution. It is shown that the refined  equation IAPWS-2024 (IAPWS R11-24), obtained on the basis of the results of  precision experiments using methods for measuring electrical conductivity in a  flow cell, allows more accurate calculation of pKw values in the  region of near-critical and supercritical parameters due to the inclusion of  these experimental data in the regression analysis.
Keywords
water dissociation constant, ionic product of water, safety, supercritical water cooled reactor, water coolant, WWER-SKD, reference data, experimental data, physical and chemical properties of water and steam, aqueous solutions, specific electrical conductivity
 Article Text (PDF, in Russian)
 References
  
 
  - Asmolov V.G. Perspektivy razvitiya tekhnologii VVER  [Prospects for the Development of WWER Technology]. V sb.: Dollezhalevskie chteniya. VII–VIII tsikly: sbornik lektsiy i  prezentatsiy [Proc. of the Dollezhal Readings. VII–VIII Cycles. Collection  of lectures and presentations]. Moscow, AO NIKIET Publ., 2024. Pp. 71–102.  Available at: https://www.nikiet.ru/page/news/files/dollezhall_chtenia_7_8c.pdf  (accessed 08.05.2025).
- Revised Release on the Ionization  Constant of H2O. IAPWS R11-24. International Association for the Properties of Water  and Steam, 2024. Available at: http://www.iapws.org/relguide/Ionization.pdf  (accessed 14.08.2025). 
- Arcis H., Bachet M., Dickinson Sh.,  Duncanson I., Eaker R.W., Jarvis J., Johnson K., Lee Ch.A., Lord F., Marks  Ch., Tremaine P.R. Revised Parameters for the IAPWS Formulation for the  Ionization Constant of Water Over a Wide Range of Temperatures and Densities,  Including Near-Critical Conditions. J.  Phys. Chem. Ref. Data, 2024, vol. 53, рр. 023103-1–023103-23. doi: 10.1063/5.0198792. 
- Arcis  H., Ferguson J.P., Cox J.S., Tremaine P.R. The Ionization Constant of Water at  Elevated Temperatures and Pressures: New Data from Direct Conductivity  Measurements and Revised Formulations from T = 273 K to 674 K and p = 0.1 MPa to 31 MPa. J.  Phys. Chem. Ref. Data, 2020, vol. 49,  pр. 03310-31―03310-37.  DOI: 10.1063/1.5127662. 
- Revised Release on the Ionization Constant of H2O. IAPWS R11-07(2019). International  Association for the Properties of Water and Steam, 2019.
- Bandura  A.V., Lvov S.N. The Ionization Constant of Water over a Wide Range of  Temperatures and Densities. J. Phys. Chem. Ref. Data, 2006,  vol. 35, pp. 15–30. DOI: 0.1063/1.1928231. 
- Bandura  A.V., Lvov S.N. The ionization constant of water over a wide range of  temperatures and densities. In: Steam, Water, and Hydrothermal Systems:  Physics and Chemistry. Meeting the Needs of Industry, ed. by P.R. Tremaine,  P.G. Hill, D.E. Irish, and P.V. Balakrishnan. Proceedings of the 13th  International Conference on the Properties of Water and Steam. Ottawa: NRC  Press, 2000. Pp. 96–103.
- Marshall  W.L., Franck E.U. Ion product of water substance, 0–1000 °C, 1–10,000  bars. New international formulation and its background. J. Phys. Chem. Ref.  Data, 1981, vol. 10, p. 295. 
- Marshall W.L. Consideration of  Present Knowledge of the Ionization Behavior of Water as a Function of Temperature  and Pressure. Minutes of IAPWS Meeting, Ottawa, Canada, September 15–9,  1975. 
- Marshall W.L. Further Evaluation of the Ionization Constant of Water.  Description from 0 to 1000 °C and from 1 to above 10,000 Bars. Minutes of IAPWS  Meeting, Kyoto, Japan, September 5–10, 1976.
- Marshall W.L. Revised Evaluation of  the Ion Product of Water. Description from 0 to 1000 °C and from 1 to above 10,000 Bars. Minutes  of IAPWS Meeting, Moscow, USSR, September 10–16, 1977. 
- Chase  M.W. JANAF Thermochemical Tables. 4th ed. J. Phys. Chem. Ref.  Data, 1998, Monograph 9.
- Revised Release on the IAPWS  Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance  for General and Scientific Use. (IAPWS, R6-95). International Association for the Properties of Water and  Steam, 2018. Available at: http://www.iapws.org/relguide/IAPWS-95.html  (accessed 14.08.2025).
- Wagner W., Pruß A. The IAPWS  Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance  for General and Scientific Use. J. Phys. Chem.  Ref. Data, 2002, vol. 31,  pp. 387–535. 
- Kharitonova  N.L., Gurbanova Sh.A. Termodinamicheskie dannye dlya rascheta  vysokotemperaturnogo vodorodnogo pokazatelya рНt vodnogo  teplonositelya reaktornykh ustanovok sverkhkriticheskikh parametrov [Thermodynamic data for calculating  the high-temperature hydrogen index pH of the water coolant of reactor  installations with supercritical parameters]. Voprosy atomnoy nauki i tekhniki. Ceriya:  Yaderno-reaktornye konstanty – Problems of Atomic Science and  Technology. Series: Nuclear and Reactor Constants, 2022, no. 4,  pp. 201–213. Available at: https://vant.ippe.ru/images/pdf/2022/issue2022-4-201-213.pdf (accessed 14.08.2025). 
- Noyes A.A., Kato Y., Sosman R.B. The hydrolysis of ammonium acetate and  the ionization of water at high temperatures. J. Am. Chem. Soc., 1910, vol. 32, рр. 159–178. 
- Holzapfel W.B., Franck E.U. Leitfahigkeit und Ionendissoziation des  Wassers bis 1000 °C und 100 kBar, Ber. Bunsenges. Phys.  Chem., 1966, vol. 70, pp. 1105–1112. 
- Quist A.S. Ionization constant of water to 800 °C and  4000 Bars. J. Phys. Chem., 1970,  vol. 74,  pp. 3396–3402. 
- Fisher J.R., Barnes H.L. Ion-product constant of water to 350 °C. J. Phys. Chem., 1972, vol. 76, pp. 90–99. 
- Svistunov E.P., Smirnov S.N., Komissarov K.B. Ionic distribution factors  of electrolytes and ionic product of water at saturation line. Therm. Eng., 1977, vol. 24, pp. 45–47. 
- Svistunov E.P., Golubev B.P., Smirnov S.N., Sevastjanov V.P. Ionic  product for water for wide range of state parameters. Therm. Eng., 1978, vol. 25, p. 70. 
- Helgeson H.C., Kirkham D.H. Theoretical  prediction of the thermodynamic properties of aqueous electrolytes at high  pressures and temperatures. III. Equation of state for aqueous species at  infinite dilution. American Journal of Science, 1976, vol. 276,  no. 2, pp. 97–240.
- Arcis H., Lee C.A., Zimmerman G.H., Tremaine P.R. Critical review of  transport properties of HCl, KOH, and NaOH in high temperature water and  correlations for H3O+ and OH−. J. Phys. Chem. Ref. Data, 2023,  vol. 52(2), p. 023103.  DOI: 10.1063/5.0138262.
- Zimmerman G.H., Staros D.J., Arcis  H. Critical review of transport and equilibrium properties of potassium chloride in high temperature water. J. Chem. Eng. Data, 2022, vol. 67, pp. 533–544. DOI: 10.1021/acs.jced.1c00814. 
- Zimmerman G.H., Gruszkiewicz M.S.,  Wood R.H. New apparatus for conductance measurements at high temperatures:  Conductance of aqueous solutions of LiCl, NaCl, NaBr, and CsBr at 28 MPa and  water densities from 700 to 260 kg m–3. J. Phys. Chem.,  1995, vol. 99, pp. 11612–11625.
- Gruszkiewicz M.S., Wood R.H.  Conductance of dilute LiCl, NaCl, NaBr, and CsBr solutions in supercritical  water using a flow conductance cell. J.  Phys. Chem., 1997, vol. 101, pp. 6549–6559.
- Hnedkovsky L., Wood R.H., Balashov  V.N. Electrical conductances of aqueous Na2SO4, H2SO4,  and their mixtures: Limiting equivalent ion conductances, dissociation  constants, and speciation to 673 K and 28 MPa. J. Phys. Chem., 2005, vol. 109, pp. 9034–9046.
- Ho P.C., Palmer D.A., Wood R.H. Conductivity measurements of dilute  aqueous LiOH, NaOH, and KOH solutions to high temperatures and pressures using  a flow-through cell. J. Phys. Chem.,  2000, vol. 104,  pp. 12084–12089. 
- Zimmerman G.H., Arcis H., Tremaine  P.R. Limiting conductivities and ion association constants of aqueous NaCl  under hydrothermal conditions: Experimental data and correlations. J. Chem. Eng. Data, 2012, vol. 57, pp. 2415–2429.
- Arcis H., Zimmerman G.H., Tremaine  P.R. Ion-pair formation in aqueous strontium chloride and strontium hydroxide  solutions under hydrothermal conditions by AC conductivity measurements. Phys. Chem. Chem. Phys., 2014,  vol. 16,  pp. 17688–17704.
- Arcis H., Ferguson J.P., Zimmerman  G.H., Tremaine P.R. The limiting conductivity of the borate ion and its  ion-pair formation constants with sodium and potassium under hydrothermal  conditions. Phys. Chem. Chem. Phys.,  2016, vol. 18,  pp. 24081–24094.
- Arcis H., Ferguson J.P., Applegarth  L.M., Zimmerman G.H., Tremaine P.R. Ionization of boric acid in water from 298  K to 623 K by AC conductivity and Raman spectroscopy. J. Chem. Thermodyn., 2017, vol. 106, pp. 187–198.
- Conrad J.K., Arcis H., Ferguson  J.P., Tremaine P.R. Second ionization constant of sulfuric acid in H2O  and D2O from 150 to 300 °C at p = 11.5 MPa using flow AC conductivity. Phys.  Chem. Chem. Phys., 2023, vol. 25, pp. 1659–1676.
- Arcis H., Plumridge J., Tremaine  P.R. Limiting conductivities of strong acids and bases in D2O and H2O:  Deuterium isotope effects on proton hopping over a wide temperature range. J. Phys. Chem., 2022, vol. 126, pp. 8791–8803.
- Arcis H., Conrad J.K., Ferguson  J.P., Erickson K.M., Tremaine P.R. First ionization constant of phosphoric acid  and of acetic acid in H2O and D2O from T  = 373 K to 573 K at p = 11.5 and 20 MPa by AC conductivity methods. J. Solution Chem., 2024, vol. 53, pp. 91–125.
- Marshall W.L. Electrical conductance  of liquid and supercritical water evaluated from 0 °C and 0.1 MPa to high temperatures  and pressures. Reduced-state relationships. J.  Chem. Eng. Data, 1987, vol. 32, pp. 221–226.
- Styrikovich  M.A., Martynova O.I., Miropol'skij Z.L. Protsessy  generatsii para na elektrostantsiyakh. Ucheb. dlya energeticheskikh  spetsial'nostey vuzov. Pod obshchey red. M.A. Styrikovicha [Steam generation  processes at power plants. Textbook for power engineering specialties of higher  education institutions]. Moscow, Energiya Publ., 1969. 312 p. 
- Kharitonova N.L., Tyapkov V.F. Water  Chemistries of VVER-SCW Nuclear Power Plants: The Choice and Justification  (Review). Therm. Eng., 2024,  vol. 71,  issue 8, pp. 675–688. DOI: https://doi.org/10.1134/S0040601524700204. 
- Cohen E.R., Cvitaˇs T., Frey J.G., Holmstrom B., Kuchitsu K., Marquardt  R., Mills I., Pavese F., Quack M., Stohner J., Strauss H.L., Takami M.,  Thor A.J. Quantities,  Units and Symbols in Physical Chemistry: IUPAC Green Book. 3rd  ed. Cambridge: RSC Publishing, 2007. 
- GOST 34100.3-2017. Neopredelennost' izmereniya. Chast' 3. Rukovodstvo po  vyrazheniyu neopredelennosti izmereniya (ISO/IEC Guide 98-3:2008 IDT) [GOST  34100.3-2017. Uncertainty of measurement. Part 3. Guide to the expression of  uncertainty in measurement (ISO/IEC Guide 98-3:2008 IDT]. Moscow,  Standartinform Publ., 2018. 
  
UDC 621.039.58
 Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 3, 3:18