EDN: SSXYBL
Authors & Affiliations
Lapin A.S., Andrianova E.A., Blandinsky V.Yu., Vnukov R.A., Kashirina V.E., Nevinitsa V.A., Fomichenko P.A.
National Research Center “Kurchatov Institute”, Moscow, Russia
Lapin A.S. – Junior Researcher. Contacts: 1, pl. Akademika Kurchatova, Moscow, 123182. Tel.: +7 (915) 129-54-14; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Andrianova E.A. – Leading Researcher, Cand. Sci. (Tech.).
Blandinsky V.Yu. – Deputy Head of International Affairs – Scientific Secretary, Cand. Sci. (Tech.).
Kashirina V.E. – Junior Researcher.
Vnukov R.A. – Junior Researcher.
Nevinitsa V.A. – Head of Department, Cand. Sci. (Tech.).
Fomichenko P.A. – Deputy Head of Complex.
Abstract
This study presents methodological approaches for modeling the WWER-S reactor with spectral regulation at the BFS-1 critical facility using standard materials. The main challenge lies in accounting for two fundamentally different core states: with fully inserted and fully withdrawn displacers, which significantly alter neutron-physical characteristics. Polyethylene pellets and rods placed in inter-tube gaps were used to simulate the water coolant.
Two distinct modeling approaches were investigated: the first involves creating separate cells for each state, while the second employs a unified base cell capable of transitioning between states through the insertion of polyethylene rods and reactivity compensation with boron absorbers. Comparative calculations were performed using modern software packages MCNP, Serpent, and MCU, showing good agreement in results (differences not exceeding 2.5 %).
The study established that steel tubes provide better matching with WWER-S spectral indices compared to aluminum ones. Special attention was given to analyzing the effect of polyethylene rods on the neutron spectrum, revealing that their effectiveness is limited due to the significant volumetric fraction of plutonium in the cell.
The obtained results demonstrate the BFS-1 facility's capabilities for modeling complex spectral regimes of WWER-S and can be used both for direct experiments with complete water replacement by polyethylene and for studies with light-water inserts. This work contributes to the development of experimental planning methodologies at critical facilities and expands the verification basis for calculation codes.
The research highlights the importance of considering spatial effects and neutron thermalization when planning experiments, while also providing practical recommendations for optimizing experimental configurations. The findings are particularly relevant for validating computational models and supporting the development of advanced reactor designs with spectral regulation capabilities.
Keywords
critical experimental facility, WWER-S, neutron energy spectrum, heterogeneous structure, driver
Article Text (PDF, in Russian)
References
- Alekseev P.N., Gagarinskii A.Yu., Kalugin M.A., Kukharkin N.E., Semchenkov Yu.M, Sidorenko V.A., Subbotin S.A., Teplov P.S., Fomichenko P.A., Asmolov V.G. On a Strategy for the Development of Nuclear Power in Russia. At Energy, 2019, vol. 126, pp. 207–212. DOI: https://doi.org/10.1007/s10512-019-00538-w.
- Semchenkov Yu.M., Subbotin S.A., Alekseev P.N., Chibinyaev A.V., Mokhov V.A., Nikitenko M.P., Veselov D.O., Kuchumov A.Yu., Berkovich, V.M. Formation of technical requirements to WWER-S. Proc. of the 9th International Scientific and Technical Conference Safety assurance of NPP with WWER. Scientific and technical electronic edition, 2015. Доступно на: https://inis.iaea.org/records/3rtvz-byn66 (дата обращения 05.11.2025).
- Kazanskii Yu.A., Dulin V.A., Zinoviev V.P. Metody izuchenija reaktornyh harakteristik na kriticheskih sborkah BFS [Methods for studying reactor characteristics on BFS critical assemblies]. Moscow, Atomizdat Pibl., 1977.
- Kochetkov A.L., Matveenko I.P., Rozhikhin E.V., Tsibulya A.M. Eksperimenty v podderzhku razmeshcheniya MOKS-topliva v reaktory VVER [Experiments in support of MOX fuel placement in WWER reactors.]. Izvestiya vuzov. Yadernaya energetika, 2007, № 3, no. 1, pp. 99–108.
- Belov S.P., Dulin V.A., Kochetkov A.L., Matveenko I.P., Nikolaev M.N., Semenov M.Yu., Tsibulya A.M., Shapar' A.V. Rezul'taty eksperimentov na kriticheskikh sborkakh BFS57 i BFS59 [Results of experiments on BFS57 and BFS59 critical assemblies]. Preprint FEI-2681 – Preprint IPPE-2681. Obninsk, FEI, 1998.
- Kochetkov A., Doulin V., Semenov M., Rozhikhin Ye., Pavlova O. BFS-57 and BFS-59 Assemblies: Experimental Program on Critical Assemblies with Heterogeneous Compositions of Enriched-Uranium Dioxide or Plutonium, Depleted Uranium Dioxide and Polyethylene. NEA/NSC/DOC (2006)1. 2006.
- MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. X-5 Monte Carlo Team. Los Alamos National Laboratory Report LA-UR-03-1987. April, 2003.
- Leppanen J., Pusa M., Viitanen T., Valtavirta V., Kaltiaisenaho T. The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy, 2015, vol. 82, pp. 142–150.
- Alekseev N.I., Bolshagin S.N., Gomin E.A., Gorodkov S.S., Gurevich M.I., Kalugin M.A., Kulakov A.S., Marin S.V., Novoseltsev A.P., Oleynik D.S., Pryanichnikov A.V., Sukhino-Khomenko E.A., Shkarovsky D.A., Yudkevich M.S. The status of MCU-5. Phys. Atom. Nuclei, 2012, vol. 75, pp. 1634–1646. DOI: https://doi.org/10.1134/S1063778812140025.
- Santamarina A. The JEFF3.1.1 Library for accurate criticality-safety calculations. Proc. of the Ninth International Conference on Nuclear Criticality Safety – ICNC 2011. Nuclear Energy Agency of the OECD (NEA), 2011, p. 1726.
- MacFarlane R.E. et al. The NJOY Nuclear Data Processing System, Version 2016. LA-UR-17-20093, December 19, 2016.
- Lapin A.S., Blandinsky V.Yu., Kolesov V.V., Vnukov R.A., Nevinitsa V.A., Rodionova E.V., Kuzenkova D.S., Fomichenko P.A., Tsibulsky S.V. Metodicheskie osobennosti rascheta kadmievykh otnoshenii metodom Monte-Karlo [Methodological features of calculating the cadmium ratio by the Monte Carlo method]. Voprosy atomnoi nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, issue 3, pp. 97–103. EDN: VSBGMG.
- Kuzenkova D.S., Lapin A.S., Vnukov R.A., Kashirina V.E., Kotov Ya.A., Nevinitsa V.A., Kolesov V.V., Blandinsky V.Yu., Fomichenko P.A., Bobrov E.A., Osipov A.M., Mikhailov G.M., Shaginyan R.A., Zhukov A.M., Korobaynikova L.V., Gulevich A.V., Manturov G.N., Eliseev V.A., Stogov V.Yu., Bednyakov S.M., Izotov V.V., Prishchepa V.V. Verifikatsiya raschetnykh podkhodov k planirovaniyu eksperimentov po modelirovaniyu neitronno-fizicheskikh kharakteristik reaktora VVER-S na stende BFS-1 [Verification of calculation methods for planning experiments to simulate neutron-physical characteristics of reactor VVER-S on the BFS-1]. Voprosy atomnoi nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2024, issue 4, pp. 109–122. EDN: OHWKKJ.
- Vnukov R.A., Kotov Ya.A., Nevinitsa V.A., Kolesov V.V., Blandinsky V.Yu., Lapin A.S., Kuzenkova D.S., Fomichenko P.A., Mikhailov G.M., Korobaynikova L.V., Buryevsky I.V., Stogov V.Yu., Shaginyan R.A., Eliseev V.A., Gulevich A.V. Otsenka vozmozhnosti polucheniya eksperimental'nykh dannykh dlya zon VVER-SKD na stende BFS [Evaluation of the possibility of performing an experiment for VVER-SKD zones at the BFS facility]. Voprosy atomnoi nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants. 2023, issue 1, pp. 117–129. EDN: EQMTTB.
- Belov S.P., Dulin V.A., Zhukov A.V., Kuzin E.N., Mozhaev V.K., Sitnikov V.I., Tsibulya A.M., Shapar’ A.V., Zayfert E., Kuntsman B., Heinzel’man B. Effects of low heterogeneity in fast critical assemblies. At Energy, 1989, vol. 66, issue1, pp. 14–20. DOI: https://doi.org/10.1007/BF01121066.
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 4, 4:4