EDN: TPNAAC
Authors & Affiliations
Shkarupa I.L., Isachenkov I.A., Ivanov A.S.
A.I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russia
Shkarupa I.L. – Head of the group, Cand. Sci. (Tech.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-70-00 (add. 55-84); e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Isachenkov I.A. – Research Engineer.
Ivanov A.S. – Research Engineer.
Abstract
The neutron capture cross-section can significantly vary depending on the neutron energy, and typically, as the neutron energy decreases, the reaction cross-section increases. To reduce the energy of neutrons, a cold neutron trap is used. It is advisable to select a coolant with the lowest possible boiling point to maximize the reduction of neutron temperature in a relatively dense liquid coolant environment. This article describes some approaches to determining the technical and economic feasibility of manufacturing and installing a cold neutron trap in the core of a nuclear reactor to enhance the production process of various valuable radioisotopes demanded in science, industry, and nuclear medicine. The article provides some calculated parameters, including: boiling point values of various potential trap materials, the required size of a trap with liquid oxygen as the coolant, the percentage of neutron absorption by trap materials, and an estimation of the increased production of various isotopes when using the trap. Data on the approximate daily and annual consumption of liquid oxygen to maintain the standard operation of the cold trap are presented. An assessment of the market for certain useful radioisotopes, currently produced in research or industrial nuclear reactors without an additional trap or obtained using accelerators, is conducted. When comparing reactors with and without a trap, the trap nearly doubles the radioisotope production, while the reactor requires significantly less energy compared to an accelerator, which demands a substantial amount of energy to produce an equivalent quantity of radioisotopes.
Keywords
сold neutron trap, nuclear reaction cross-section, pool-type reactor, liquid oxygen, neutron moderation, production of radioisotopes
Article Text (PDF, in Russian)
References
- Risovany V.D., Dub A.V., Kondratyev N.A., Pershukov V.A., Asmolov V.G. Sposob polucheniya radioaktivnykh izotopov v yadernom reaktore na bystrykh neytronakh [Method for producing radioactive isotopes in a fast neutron nuclear reactor]. Patent RF No. RU2645718C2, 2018.
- Mokrushin A.A., Polunin K.K., Fedorov E.N., Bragin S.Yu., Risovany V.D. Obluchatel'noe ustroystvo dlya narabotki izotopa Сo-60 v reaktore na bystrykh neytronakh [Irradiation device for producing the isotope Co-60 in a fast neutron reactor]. Patent of the RF No. RU2769482C1, 2022.
- Marshalkin V.E., Povyishev V.M. Sposob ekspluatatsii yadernogo reaktora v uran-torievom toplivnom tsikle s narabotkoy izotopa 233U [Method of operating a nuclear reactor in a uranium-thorium fuel cycle with the production of the 233U isotope]. Patent of the RF No. RU2619599C1, 2017.
- Arzhatkina O.A., Mikhaluk V.S., Pronichev V.P., Silin B.G. Sposob obrabotki metallicheskikh radioaktivnykh otkhodov, obrazovannykh pri pererabotke yadernogo topliva vodo-vodyanykh reaktorov i reaktorov RBMK [Method for processing metal radioactive waste generated during the processing of nuclear fuel from water-cooled reactors and RBMK reactors]. Patent of the RF No. RU2569998C2, 2015.
- Polyakova M. Izotopy v promyshlennykh masshtabakh [Isotopes on an Industrial Scale]. Zhurnal “Vestnik Atomproma” – Vestnik Atomproma Magazine. Available at: https://atomvestnik.ru/2023/11/27/izotopy-v-promyshlennyh-masshtabah/ (accessed 27.08.2025).
- Shelegov A.S., Lemkin S.T., Slobatchuk V.I. Physical Features and Design of the RBMK-1000 Reactor. Tutorial. M.: NRC MEPhI, 2011, 64 p.
- Evaluated Nuclear Data File (ENDF). Available at: https://www-nds.iaea.org/public/download-endf/ENDF-B-VIII.1 (accessed 27.08.2025).
- Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library. Available at: https://www-nds.iaea.org/public/download-endf/JEFF-3.2 (accessed 27.08.2025).
- The Japanese Evaluated Nuclear Data Library (JENDL). Available at: https://www-nds.iaea.org/public/download-endf/JENDL-5 (accessed 27.08.2025).
- ROSsiyskaya biblioteka Faylov Otsenennykh Neytronnykh Dannykh (ROSFOND) [Russian Library of Estimated Neutron Data Files (ROSFOND)]. Available at: https://www.ippe.ru/reactors/reactor-constants-datacenter/rosfond-neutron-database (accessed 27.08.2025).
- Levitsev Yu.Yu., Kushnir Yu.A., Morozov V.I., Plotnikov I.A. Magnitnaya lovushka dlya uderzhaniya ul'trakholodnykh neytronov [A magnetic trap for trapping ultracold neutrons]. Dimitrovgrad: Nauchno-issledovatel'skiy institut atomnykh reaktorov im V.I. Lenina Publ., 1978. 27 p.
- Kapitonov I.M. Yadernaya rezonansnaya fluorestsentsiya. Izdanie vtoroe, dopolnennoe [Nuclear Resonance Fluorescence. 2nd edition]. Moscow, Moskovskiy Gosudarstvennyy Universitet imeni M.V. Lomonosova., supplemented, 2018. Pp. 11–14.
- Kiper R.A. Fiziko-khimicheskie svoystva veshchestv. Spravochnik po khimii [Physical and Chemical Properties of Substances. Handbook on Chemistry]. Khabarovsk, 2013. 1015 p.
- GOST 3022-80. Vodorod tekhnicheskiy. Tekhnicheskie usloviya (s Izmeneniyami № 1, 2) [GOST 3022-80. Technical Hydrogen. Technical Specifications (with Changes No. 1 and 2)”]. Moscow, Gosudarstvennyy komitet SSSR po upravleniyu kachestvom produktsii i standartam Publ., 1980. Pp. 2–3.
- GOST 10157-2016. Argon gazoobraznyy i zhidkiy. Tekhnicheskie usloviya [GOST 10157-2016. Argon Gaseous and Liquid. Technical Conditions]. Moscow, Standartinform Publ., 2019. P. 3.
- Morzhukhina A.V. Vysokotochnye metody eksperimental’nogo i matematicheskogo modelirovaniya protsessov teploobmena v sloyakh vysokoporistykh teplozashchitnykh pokrytiy letatel’nykh apparatov. Dis. kand. tekh. nauk [High-Precision Methods of Experimental and Mathematical Modeling of Heat Transfer Processes in Layers of Highly Porous Thermal Protection Coatings of Aircraft. Diss. cand. tech. sci.]. Moscow, 2014. Pp. 6–16.
- Heltemes T., Karcz P., Dix. J. Ensuring a stable supply of Mo-99 in the United States without the use of HEUIAEA. Proc. of the International Conference on Nuclear Security (ICONS 2020). Vienna, Austria, February, 2020. Available at: https://conferences.iaea.org/event/181/contributions/15802/attachments/8799/11860/ID_395_Heltemes_Paper.pdf (accessed 6.11.2025).
- Pozdeev V.V., Kochnov O.Yu., Krasheninnikov A.I., Stepanov V.I., Grachev A.F. Production of Medical 99Mo and Molybdenum-Technetium Generators at the Karpov Research Institute of Physical Chemistry. At Energy, 2014, vol. 117, issue 2, pp. 117–122. DOI: https://doi.org/10.1007/s10512-014-9898-9.
- Technetium-99m (Tc-99m) Generator production at ANSTO. Available at: https://archive.ansto.com/AboutANSTO/MediaCentre/News/ACS181901.html (accessed 26.08.2025).
- Benoit Leon. The national research universal reactor shutdown and the future of medical isotope production and research in Canada. Report of the Standing Committee on Natural Resources November, 40th Parliament, 3rd Session. 2010. Available at: https://www.ourcommons.ca/Content/Committee/403/RNNR/Reports/RP4500827/rnnrrp02/rnnrrp02-e.pdf (accessed 26.08.2025).
- Baranaev Yu.D., Glebov A.P., Klushin A.V., Sozonyuk V.A. Ispol'zovanie basseynovogo reaktora RUTA dlya realizatsii naukoemkikh yadernykh tekhnologiy [Use of a Root Pool Reactor for the Implementation of High-Tech Nuclear Technologies]. Sovremennye naukoemkie tekhnologii – Modern High-Tech Technologies, 2005, no. 11, pp. 24–26.
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 4, 4:11